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ARM PROGRAMMING USING ASSEMBLY LANGUAGE 

WRITING ASSEMBLY CODE: 

This section gives examples showing how to write basic assembly code. Also, this section uses the ARM 

macro assembler armasm for examples. 

Example 1: 

This example shows how to convert a C 

function to an assembly function—usually the 

first stage of assembly optimization. Consider 

the simple C program main.c following that 

prints the squares of the integers from 0 to 9: 

Let’s see how to replace square by an assembly 

function that performs the same action. Remove the C 

definition of square, but not the declaration (the 

second line) to produce a new C file main1.c. Next add 

an armasm assembler file square.s with the following 

contents: 

 

 

 

 

 The AREA directive names the area or code section that the code lives in. If you use non- 

alphanumeric characters in a symbol or area name, then enclose the name in vertical bars. Many 

non-alphanumeric characters have special meanings otherwise. In the previous code we define a 

read-only code area called .text. 

 The EXPORT directive makes the symbol square available for external linking. At line six we 

define the symbol square as a code label. Note that armasm treats non-indented text as a label 

definition. 

 When square is called, the parameter passing is defined by the ARM-Thumb procedure call 

standard (ATPCS). The input argument is passed in register r0, and the return value is returned in 

register r0. The multiply instruction has a restriction that the destination register must not be the 

same as the first argument register. Therefore we place the multiply result into r1 and move this 

to r0. 

 The END directive marks the end of the assembly file. Comments follow a semicolon. 
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The following script illustrates how to build this example using command line tools. 
 
 
 
 

Example 1 only works if you are compiling your C as ARM code. If you compile your C as Thumb code, 

then the assembly routine must return using a BX instruction. 

 
Example 2: When calling ARM code from C compiled as Thumb, the only change required to the 

assembly in Example 1 is to change the return instruction to a BX. BX will return to ARM or Thumb state 

according to bit 0 of lr. Therefore this routine can be called from ARM or Thumb. Use BX lr instead of 

MOV pc, lr whenever your processor supports BX (ARMv4T and above). Create a new assembly file 

square2.s as follows: 

 

With this example we build the C file using the Thumb C compiler tcc. We assemble the assembly file 

with the interworking flag enabled so that the linker will allow the Thumb C code to call the ARM 

assembly code. You can use the following commands to build this example: 

 
 
 

Example 3: This example shows how to call a subroutine from an assembly routine. We will take 

Example 1 and convert the whole program (including main) into assembly. We will call the C library 

routine printf as a subroutine. Create a new assembly file main3.s with the following contents: 
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 The IMPORT directive is used to declare symbols that are defined in other files. 

 The imported symbol Lib$$Request$$armlib makes a request that  the linker  links with the 

standard ARM C library. 

o The WEAK specifier prevents the linker from giving an error if the symbol is not found at 

link time. If the symbol is not found, it will take the value zero. 

 The second imported symbol main is the start of the C library initialization code. 

You only need to import these symbols if you are defining your own main; a main defined in C code will 

import these automatically for you. Importing printf allows us to call that C library function. 

 The RN directive allows us to use names for registers. In this case we define i as an alternate 

name for register r4. 
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o Using register names makes the code more readable. It is also easier to change the 

allocation of variables to registers at a later date. Recall that ATPCS states that a function 

must preserve registers r4 to r11 and sp. We corrupt i (r4), and calling printf will corrupt 

lr. Therefore we stack these two registers at the start of the function using an STMFD 

instruction. The LDMFD instruction pulls these registers from the stack and returns by 

writing the return address to pc. 

 The DCB directive defines byte data described as a string or a comma-separated list of bytes. 

To build this example you can use the following command line script: 
 

Note that Example 3 also assumes that the code is called from ARM code. If the code can be called from 

Thumb code as in Example 2 then we must be capable of returning to Thumb code. For architectures 

before ARMv5 we must use a BX to return. Change the last instruction to the two instructions: 

 
 

Example 4: This example defines a function sumof that can sum any number of integers. The arguments 

are the number of integers to sum followed by a list of the integers. The sumof function is written in 

assembly and can accept any number of arguments. Put the C part of the example in a file main4.c: 

 

Next define the sumof function in an assembly file sumof.s: 
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The code keeps count of the number of remaining values to sum, N. The first three values are in registers 

r1, r2, r3. The remaining values are on the stack (Recall that ATPCS places the first four arguments in 

registers r0 to r3. Subsequent arguments are placed on the stack). You can build this example using the 

commands – 

 

 
PROFILING AND CYCLE COUNTING: 

 The first stage of any optimization process is to identify the critical routines and measure their 

current performance. A profiler is a tool that measures the proportion of time or processing cycles 

spent in each subroutine. You use a profiler to identify the most critical routines. 
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 A cycle counter measures the number of cycles taken by a specific routine. You can measure 

your success by using a cycle counter to benchmark a given subroutine before and after an 

optimization. 

 The ARM simulator used by the ADS1.1 debugger is called the ARMulator and provides profiling 

and cycle counting features. 

o The ARMulator profiler works by sampling the program counter pc at regular intervals. 

The profiler identifies the function the pc points to and updates a hit counter for each 

function it encounters. Another approach is to use the trace output of a simulator as a 

source for analysis. 

o The accuracy of a pc-sampled profiler is limited, as it can produce meaningless results if 

it records too few samples. 

 ARM implementations do not normally contain cycle-counting hardware; so to easily measure 

cycle counts you should use an ARM debugger with ARM simulator. 

o You can configure the ARMulator to simulate a range of different ARM cores and obtain 

cycle count benchmarks for a number of platforms. 

 
INSTRUCTION SCHEDULING: 

The time taken to execute instructions depends on the implementation pipeline. For this section, we 

assume ARM9TDMI pipeline timings. The following rules summarize the cycle timings for common 

instruction classes on the ARM9TDMI. 

Instructions that are conditional on the value of the ARM condition codes in the cpsr take one cycle if the 

condition is not met. If the condition is met, then the following rules apply: 

 ALU operations such as addition, subtraction, and logical operations take one cycle. 

 This includes a shift by an immediate value. If you use a register-specified shift, then add one 

cycle. If the instruction writes to the pc, then add two cycles. 

 Load instructions that load N 32-bit words of memory such as LDR and LDM take N cycles to 

issue, but the result of the last word loaded is not available on the following cycle. 

o The updated load address is available on the next cycle. This assumes zero-wait-state 

memory for an un-cached system, or a cache hit for a cached system. An LDM of a single 

value is exceptional, taking two cycles. If the instruction loads pc, then add two cycles. 

o Load instructions that load 16-bit or 8-bit data such as LDRB, LDRSB, LDRH, and 

LDRSH take one cycle to issue. The load result is not available on the following two 

cycles. The updated load address is available on the next cycle. This assumes zero-wait- 

state memory for an un-cached system, or a cache hit for a cached system. 

 Branch instructions take three cycles. 
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 Store instructions that store N values take N cycles. This assumes zero-wait-state memory for an 

un-cached system, or a cache hit or a write buffer with N free entries for a cached system. An 

STM of a single value is exceptional, taking two cycles. 

 Multiply instructions take a varying number of cycles depending on the value of the second 

operand in the product. 

 

To understand how to schedule code efficiently on the ARM, we need to understand the ARM pipeline 

and dependencies. The ARM9TDMI processor performs five operations in parallel: 

 Fetch: Fetch from memory the instruction at address pc. The instruction is loaded into the core 

and then processes down the core pipeline. 

 Decode: Decode the instruction that was fetched in the previous cycle. The processor also reads 

the input operands from the register bank if they are not available via one of the forwarding paths. 

 ALU: Executes the instruction that was decoded in the previous cycle. Note this instruction was 

originally fetched from address pc − 8 (ARM state) or pc − 4 (Thumb state). 

o Normally this involves calculating the answer for a data processing operation, or the 

address for a load, store, or branch operation. 

o Some instructions may spend several cycles in this stage. For example, multiply and 

register-controlled shift operations take several ALU cycles. 

 LS1: Load or store the data specified by a load or store instruction. If the instruction is not a load 

or store, then this stage has no effect. 

 LS2: Extract and zero- or sign-extend the data loaded by a byte or half-word load instruction. If 

the instruction is not a load of an 8-bit byte or 16-bit half-word item, then this stage has no effect. 

 
The following Figure shows a simplified functional view of the five-stage ARM9TDMI pipeline. 

 

 
 
 

Note that multiply and register shift operations are not shown in the figure. 

After an instruction has completed the five stages of the pipeline, the core writes the result to the register 

file. Note that pc points to the address of the instruction being fetched. The ALU is executing the 

instruction that was originally fetched from address pc − 8 in parallel with fetching the instruction at 

address pc. 
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How does the pipeline affect the timing of instructions? Consider the following examples. These 

examples show how the cycle timings change because an earlier instruction must complete a stage before 

the current instruction can progress down the pipeline. 

If an instruction requires the result of a previous instruction that is not available, then the processor stalls. 

This is called a pipeline hazard or pipeline interlock. 

 
Example 5: This example shows the case where there is no interlock. 

 

This instruction pair takes two cycles. The ALU calculates r0 + r1 in one cycle. Therefore this result is 

available for the ALU to calculate r0 + r2 in the second cycle. 

 
Example 6: This example shows a one-cycle interlock caused by load use. 

 

This instruction pair takes three cycles. The ALU calculates the address r2 + 4 in the first cycle while 

decoding the ADD instruction in parallel. However, the ADD cannot proceed on the second cycle because 

the load instruction has not yet loaded the value of r1. Therefore the pipeline stalls for one cycle while the 

load instruction completes the LS1 stage. Now that r1 is ready, the processor executes the ADD in the 

ALU on the third cycle. 

The following Figure illustrates how this interlock affects the pipeline. 
 

The processor stalls the ADD instruction for one cycle in the ALU stage of the pipeline while the load 

instruction completes the LS1 stage. Figure denotes this stall by italic ADD. Since the LDR instruction 

proceeds down the pipeline, but the ADD instruction is stalled, a gap opens up between them. This gap is 

sometimes called a pipeline bubble. We’ve marked the bubble with a dash. 

 
Example 7: This example shows a one-cycle interlock caused by delayed load use. 
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This instruction triplet takes four cycles. Although the ADD proceeds on the cycle following the load 

byte, the EOR instruction cannot start on the third cycle. The r1 value is not ready until the load 

instruction completes the LS2 stage of the pipeline. The processor stalls the EOR instruction for one cycle. 

Note that the ADD instruction does not affect the timing at all. The sequence takes four cycles whether it 

is there or not! The following Figure shows how this sequence progresses through the processor pipeline. 

The ADD doesn’t cause any stalls since the ADD does not use r1, the result of the load. 

 
 

Example 8: This example shows why a branch instruction takes three cycles. The processor must flush 

the pipeline when jumping to a new address. 

 

The three executed instructions take a total of five cycles. The MOV instruction executes on the first 

cycle. On the second cycle, the branch instruction calculates the destination address. This causes the core 

to flush the pipeline and refill it using this new pc value. The refill takes two cycles. Finally, the SUB 

instruction executes normally. The following Figure illustrates the pipeline state on each cycle. The 

pipeline drops the two instructions following the branch when the branch takes place. 
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Scheduling of Load Instructions: 

Load instructions occur frequently in compiled code, accounting for approximately one-third of all 

instructions. Careful scheduling of load instructions so that pipeline stalls don’t occur can improve 

performance. The compiler attempts to schedule the code as best it can, but the aliasing problem of C 

limits the available optimizations. The compiler cannot move a load instruction before a store instruction 

unless it is certain that the two pointers used do not point to the same address. 

Consider an example of a memory-intensive task. The following function, str_tolower, copies a zero- 

terminated string of characters from in to out. It converts the string to lowercase in the process. 

 
The compiler generates the above compiled output. Notice that the compiler optimizes the condition (c 

>= ‘A’ && c <= ‘Z’) to the check that 0 <= c-‘A’ <= ‘Z’-‘A’. The compiler can perform this check 

using a single unsigned comparison. 

Unfortunately, the SUB instruction uses the value of c directly after the LDRB instruction that loads c. 

Consequently, the ARM9TDMI pipeline will stall for two cycles. The compiler can’t do any better since 

everything following the load of c depends on its value. 

However, there are two ways you can alter the structure of the algorithm to avoid the cycles by using 

assembly. We call these methods load scheduling by preloading and unrolling. 

» Load Scheduling by Preloading & Load Scheduling by Unrolling – Self Study. 
 

REGISTER ALLOCATION: 

You can use 14 of the 16 visible ARM registers to hold general-purpose data. The other two registers are 

the stack pointer, r13, and the program counter, r15. For a function to be ATPCS compliant it must 

preserve the callee values of registers r4 to r11. ATPCS also specifies that the stack should be eight-byte 

aligned; therefore you must preserve this alignment if calling subroutines. Use the following template for 

optimized assembly routines requiring many registers: 
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The only purpose in stacking r12 is to keep the stack eight-byte aligned. You need not stack r12 if your 

routine doesn’t call other ATPCS routines. For ARMv5 and above you can use the preceding template 

even when being called from Thumb code. If your routine may be called from Thumb code on an 

ARMv4T processor, then modify the template as follows: 

 
 
 

Allocating Variables to Register Numbers: 

When you write an assembly routine, it is best to start by using names for the variables, rather than 

explicit register numbers. This allows you to change the allocation of variables to register numbers easily. 

You can even use different register names for the same physical register number when their use doesn’t 

overlap. Register names increase the clarity and readability of optimized code. 

For the most part ARM operations are orthogonal with respect to register number. In other words, specific 

register numbers do not have specific roles. If you swap all occurrences of two registers Ra and Rb in a 

routine, the function of the routine does not change. 

However, there are several cases where the physical number of the register is important: 

 Argument registers: The ATPCS convention defines that the first four arguments to a function are 

placed in registers r0 to r3. Further arguments are placed on the stack. 

o The return value must be placed in r0. 

 Registers used in a load or store multiple: Load and store multiple instructions LDM and STM 

operate on a list of registers in order of ascending register number. If r0 and r1 appear in the 

register list, then the processor will always load or store r0 using a lower address than r1 and so 

on. 

 Load and store double word: The LDRD and STRD instructions introduced in ARMv5E operate 

on a pair of registers with sequential register numbers, Rd and Rd + 1. Furthermore, Rd must be 

an even register number. 
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Using More Than 14 Local Variables: 

If you need more than 14 local 32-bit variables in a routine, then you must store some variables on the 

stack. The standard procedure is to work outwards from the innermost loop of the algorithm, since the 

innermost loop has the greatest performance impact. 

 
Making the Most of Available Registers: 

On load-store architecture such as the ARM, it is more efficient to access values held in registers than 

values held in memory. There are several tricks you can use to fit several sub-32-bit length variables into 

a single 32-bit register and thus can reduce code size and increase performance. 

 
CONDITIONAL EXECUTION: 

The processor core can conditionally execute most ARM instructions. This conditional execution is based 

on one of 15 condition codes. If you don’t specify a condition, the assembler defaults to execute always 

condition (AL). The other 14 conditions split into seven pairs of complements. The conditions depend on 

the four condition code flags N, Z, C, V stored in the cpsr register. 

By default, ARM instructions do not update the N, Z, C, V flags in the ARM cpsr. For most instructions, 

to update these flags you append an S suffix to the instruction mnemonic. 

Exceptions to this are comparison instructions that do not write to a destination register. Their sole 

purpose is to update the flags and so they don’t require the S suffix. 

By combining conditional execution and conditional setting of the flags, you can implement simple if 

statements without any need for branches. This improves efficiency since branches can take many cycles 

and also reduces code size. 

 
Example 17: The following C code converts an unsigned integer 0 ≤ i ≤ 15 to a hexadecimal character c: 

 

 

 
 
 
We can write this in assembly 

using conditional execution 

rather than conditional 

branches: 

 
 
 
 
 

 

The sequence works since the first ADD does not change the condition codes. The second ADD is still 

conditional on the result of the compare. 

Conditional execution is even more powerful for cascading conditions. 
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xample 18: The following C code identifies if c is a vowel: 
 

In assembly you can write this using conditional comparison: 
 

As soon as one of the TEQ comparisons detects a match, the Z flag is set in the cpsr. The following 

TEQNE instructions have no effect as they are conditional on Z = 0. The next instruction to have effect is 

the ADDEQ that increments vowel. You can use this method whenever all the comparisons in the if 

statement are of the same type. 

 
Example 19: Consider the following code that detects if c is a letter: 

 

To implement this efficiently, we can use an addition or subtraction to move each range to the form 0 ≤ c 

≤ limit. Then we use unsigned comparisons to detect this range and conditional comparisons to chain 

together ranges. The following assembly implements this efficiently: 
 

Note that the logical operations AND and OR are related by the standard logical relations as shown in the 

following Table. You can invert logical expressions involving OR to get an expression involving AND, 

which can often be useful in simplifying or rearranging logical expressions. 
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LOOPING CONSTRUCTS: 

Most routines critical to performance will contain a loop. Note that, ARM loops are fastest when they 

count down towards zero. This section describes how to implement these loops efficiently in assembly. 

We also look at examples of how to unroll loops for maximum performance. 

 
Decremented Counted Loops: 

For a decrementing loop of N iterations, the loop counter i counts down from N to 1 inclusive. The loop 

terminates with i = 0. An efficient implementation is 

 

The loop overhead consists of a subtraction setting the condition codes followed by a conditional branch. 

On ARM7 and ARM9 this overhead costs four cycles per loop. If i is an array index, then you may want to 

count down from N−1 to 0 inclusive instead so that you can access array element zero. You can 

implement this in the same way by using a different conditional branch: 

 

In this arrangement the Z flag is set on the last iteration of the loop and cleared for other iterations. If 

there is anything different about the last loop, then we can achieve this using the EQ and NE conditions. 

For example, if you preload data for the next loop, then you want to avoid the preload on the last loop. 

You can make all preload operations conditional on NE. 

There is no reason why we must decrement by one on each loop. Suppose we require N/3 loops; rather 

than attempting to divide N by three, it is far more efficient to subtract three from the loop counter on 

each iteration: 
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Unrolled Counted Loops: 

Loop unrolling reduces the loop overhead by executing the loop body multiple times. However, there are 

problems to overcome. 

 
Multiple Nested Loops: 

How many loop counters does it take to maintain multiple nested loops? Actually, one will suffice—or 

more accurately, one provided the sum of the bits needed for each loop count does not exceed 32. We can 

combine the loop counts within a single register, placing the innermost loop count at the highest bit 

positions. 

 
Other Counted Loops: 

You may want to use the value of a loop counter as an input to calculations in the loop. It’s not always 

desirable to count down from N to 1 or N −1 to 0. For example, you may want to select bits out of a data 

register one at a time; in this case you may want a power-of-two mask that doubles on each iteration. 

The following subsections show useful looping structures that count in different patterns. They use only a 

single instruction combined with a branch to implement the loop. 

 
Negative Indexing: This loop structure counts from −N to 0 (inclusive or exclusive) in steps of size 

STEP. 
 

 
 
 

Logarithmic Indexing: This loop structure counts down from 2N to 1 in powers of two. For example, if N 

= 4, then it counts 16, 8, 4, 2, 1. 
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The following loop structure counts down from an N-bit mask to a one-bit mask. For example, if N = 4, 

then it counts 15, 7, 3, 1. 

 
 
 
 
 

 


