
Prof. Manjusha, Asst Prof., Dept of CSE, SVIT

Introduction to Python Programming (BPLCK105B) Module 3

Page 1

 CHAPTER 1

MANIPULATING STRINGS

1. Working with Strings

2. Useful String Methods

3. Project: Password Locker

4. Project: Adding Bullets to Wiki Markup

1.1 Working with strings

String Literals

➢ String values begin and end with a single quote.

➢ But we want to use either double or single quotes within a string then we have a

multiple ways to do it as shown below.

Double Quotes

➢ One benefit of using double quotes is that the string can have a single quote character in

it.

➢ Since the string begins with a double quote, Python knows that the single quote is part

of the string and not marking the end of the string.

Escape Characters

➢ If you need to use both single quotes and double quotes in the string, you’ll need to use

escape characters.

➢ An escape character consists of a backslash (\) followed by the character you want to

add to the string.

➢ Python knows that the single quote in Bob\'s has a backslash, it is not a single quote

meant to end the string value. The escape characters \' and \" allows to put single quotes

and double quotes inside your strings, respectively.

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT

Introduction to Python Programming (BPLCK105B) Module 3

Page 2

Ex:

➢ The different special escape characters can be used in a program as listed below in a

table.

Raw Strings

➢ You can place an r before the beginning quotation mark of a string to make it a raw

string. A raw string completely ignores all escape characters and prints any backslash

that appears in the string

Multiline Strings with Triple Quotes

➢ A multiline string in Python begins and ends with either three single quotes or three

double quotes.

➢ Any quotes, tabs, or newlines in between the “triple quotes” are considered part of the

string.

Program

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT

Introduction to Python Programming (BPLCK105B) Module 3

Page 3

Output

➢ The following print() call would print identical text but doesn’t use a multiline string.

Multiline Comments

➢ While the hash character (#) marks the beginning of a comment for the rest of the

line.

➢ A multiline string is often used for comments that span multiple lines.

Indexing and Slicing Strings

➢ Strings use indexes and slices the same way lists do. We can think of the string 'Hello

world!' as a list and each character in the string as an item with a corresponding index.

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT

Introduction to Python Programming (BPLCK105B) Module 3

Page 4

➢ The space and exclamation point are included in the character count, so 'Hello world!'

is 12 characters long.

➢ If we specify an index, you’ll get the character at that position in the string.

➢ If we specify a range from one index to another, the starting index is included and the

ending index is not.

➢ The substring we get from spam[0:5] will include everything from spam[0] to

spam[4], leaving out the space at index 5.

The in and not in Operators with Strings

➢ The in and not in operators can be used with strings just like with list values.

➢ An expression with two strings joined using in or not in will evaluate to a Boolean

True or False.

➢ These expressions test whether the first string (the exact string, case sensitive) can be

found within the second string.

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT

Introduction to Python Programming (BPLCK105B) Module 3

Page 5

1.2 Useful String Methods

➢ Several string methods analyze strings or create transformed string values.

The upper(), lower(), isupper(), and islower() String Methods

➢ The upper() and lower() string methods return a new string where all the letters in the

original string have been converted to uppercase or lowercase, respectively.

➢ These methods do not change the string itself but return new string values.

➢ If we want to change the original string, we have to call upper() or lower() on the

string and then assign the new string to the variable where the original was stored.

➢ The upper() and lower() methods are helpful if we need to make a case-insensitive

comparison.

➢ In the following small program, it does not matter whether the user types Great,

GREAT, or grEAT, because the string is first converted to lowercase.

Program Output

➢ The isupper() and islower() methods will return a Boolean True value if the string has

at least one letter and all the letters are uppercase or lowercase, respectively. Otherwise,

the method returns False.

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT

Introduction to Python Programming (BPLCK105B) Module 3

Page 6

➢ Since the upper() and lower() string methods themselves return strings, you can call

string methods on those returned string values as well. Expressions that do this will

look like a chain of method calls.

The isX String Methods

➢ There are several string methods that have names beginning with the word is. These

methods return a Boolean value that describes the nature of the string.

➢ Here are some common isX string methods:

o isalpha() returns True if the string consists only of letters and is not blank.

o isalnum() returns True if the string consists only of letters and numbers and is

not blank.

o isdecimal() returns True if the string consists only of numeric characters and

is not blank.

o isspace() returns True if the string consists only of spaces, tabs, and newlines

and is not blank.

o istitle() returns True if the string consists only of words that begin with an

uppercase letter followed by only lowercase letters.

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT

Introduction to Python Programming (BPLCK105B) Module 3

Page 7

➢ The isX string methods are helpful when you need to validate user input.

➢ For example, the following program repeatedly asks users for their age and a

password until they provide valid input.

Program output

The startswith() and endswith() String Methods

➢ The startswith() and endswith() methods return True if the string value they are called

on begins or ends (respectively) with the string passed to the method; otherwise, they

return False.

➢ These methods are useful alternatives to the == equals operator if we need to check

only whether the first or last part of the string, rather than the whole thing, is equal to

another string.

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT

Introduction to Python Programming (BPLCK105B) Module 3

Page 8

The join() and split() String Methods

Join()

➢ The join() method is useful when we have a list of strings that need to be joined

together into a single string value.

➢ The join() method is called on a string, gets passed a list of strings, and returns a

string. The returned string is the concatenation of each string in the passed-in list.

➢ string join() calls on is inserted between each string of the list argument.

o Ex: when join(['cats', 'rats', 'bats']) is called on the ', ' string, the returned string is

'cats, rats, bats'.

o join() is called on a string value and is passed a list value.

Split()

➢ The split() method is called on a string value and returns a list of strings.

➢ We can pass a delimiter string to the split() method to specify a different string to split

upon.

➢ common use of split() is to split a multiline string along the newline characters.

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT

Introduction to Python Programming (BPLCK105B) Module 3

Page 9

➢ Passing split() the argument '\n' lets us split the multiline string stored in spam along

the newlines and return a list in which each item corresponds to one line of the string.

Justifying Text with rjust(), ljust(), and center()

➢ The rjust() and ljust() string methods return a padded version of the string they are

called on, with spaces inserted to justify the text.

➢ The first argument to both methods is an integer length for the justified string.

➢ 'Hello'.rjust(10) says that we want to right-justify 'Hello' in a string of total length 10.

'Hello' is five characters, so five spaces will be added to its left, giving us a string of 10

characters with 'Hello' justified right.

➢ An optional second argument to rjust() and ljust() will specify a fill character other than

a space character.

➢ The center() string method works like ljust() and rjust() but centers the text rather than

justifying it to the left or right.

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT

Introduction to Python Programming (BPLCK105B) Module 3

Page 10

➢ These methods are especially useful when you need to print tabular data that has the

correct spacing.

➢ In the below program, we define a printPicnic() method that will take in a dictionary of

information and use center(), ljust(), and rjust() to display that information in a neatly

aligned table-like format.

o The dictionary that we’ll pass to printPicnic() is picnicItems.

o In picnicItems, we have 4 sandwiches, 12 apples, 4 cups, and 8000 cookies. We

want to organize this information into two columns, with the name of the item

on the left and the quantity on the right.

Program output

Removing Whitespace with strip(), rstrip(), and lstrip()

➢ The strip() string method will return a new string without any whitespace characters at

the beginning or end.

➢ The lstrip() and rstrip() methods will remove whitespace characters from the left and

right ends, respectively.

➢ Optionally, a string argument will specify which characters on the ends should be

stripped.

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT

Introduction to Python Programming (BPLCK105B) Module 3

Page 11

➢ Passing strip() the argument 'ampS' will tell it to strip occurences of a, m, p, and

capital S from the ends of the string stored in spam.

➢ The order of the characters in the string passed to strip() does not matter: strip('ampS')

will do the same thing as strip('mapS') or strip('Spam').

Copying and Pasting Strings with the pyperclip Module

➢ The pyperclip module has copy() and paste() functions that can send text to and

receive text from your computer’s clipboard.

➢ Of course, if something outside of your program changes the clipboard contents, the

paste() function will return it.

1.3 Project: Password Locker

➢ We probably have accounts on many different websites.

➢ It’s a bad habit to use the same password for each of them because if any of those sites

has a security breach, the hackers will learn the password to all of your other accounts.

➢ It’s best to use password manager software on your computer that uses one master

password to unlock the password manager.

➢ Then you can copy any account password to the clipboard and paste it into the website’s

Password field

➢ The password manager program you’ll create in this example isn’t secure, but it offers

a basic demonstration of how such programs work.

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT

Introduction to Python Programming (BPLCK105B) Module 3

Page 12

Step 1: Program Design and Data Structures

➢ We have to run this program with a command line argument that is the account’s name-

-for instance, email or blog. That account’s password will be copied to the clipboard so

that the user can paste it into a Password field. The user can have long, complicated

passwords without having to memorize them.

➢

comment that briefly describes the program. Since we want to associate each

account’s name with its password, we can store these as strings in a dictionary.

Step 2: Handle Command Line Arguments

➢ The command line arguments will be stored in the variable sys.argv.

➢ The first item in the sys.argv list should always be a string containing the program’s

filename ('pw.py'), and the second item should be the first command line argument.

Step 3: Copy the Right Password

➢ The account name is stored as a string in the variable account, you need to see whether

it exists in the PASSWORDS dictionary as a key. If so, you want to copy the key’s

value to the clipboard using pyperclip.copy().

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT

Introduction to Python Programming (BPLCK105B) Module 3

Page 13

➢ This new code looks in the PASSWORDS dictionary for the account name. If the

account name is a key in the dictionary, we get the value corresponding to that key,

copy it to the clipboard, and print a message saying that we copied the value. Otherwise,

we print a message saying there’s no account with that name.

➢ On Windows, you can create a batch file to run this program with the win-R Run

window. Type the following into the file editor and save the file as pw.bat in the

C:\Windows folder:

➢ With this batch file created, running the password-safe program on Windows is just a

matter of pressing win-R and typing pw <account name>.

1.4 Project: Adding Bullets to Wiki Markup

➢ When editing a Wikipedia article, we can create a bulleted list by putting each list item

on its own line and placing a star in front.

➢ But say we have a really large list that we want to add bullet points to. We could just

type those stars at the beginning of each line, one by one. Or we could automate this

task with a short Python script.

➢ The bulletPointAdder.py script will get the text from the clipboard, add a star and space

to the beginning of each line, and then paste this new text to the clipboard.

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT

Introduction to Python Programming (BPLCK105B) Module 3

Page 14

➢ Ex:

Program output

Step 1: Copy and Paste from the Clipboard

➢ You want the bulletPointAdder.py program to do the following:

1. Paste text from the clipboard

2. Do something to it

3. Copy the new text to the clipboard

➢ Steps 1 and 3 are pretty straightforward and involve the pyperclip.copy() and

pyperclip.paste() functions. saving the following program as bulletPointAdder.py:

Step 2: Separate the Lines of Text and Add the Star

➢ The call to pyperclip.paste() returns all the text on the clipboard as one big string. If we

used the “List of Lists of Lists” example, the string stored in text.

➢ The \n newline characters in this string cause it to be displayed with multiple lines when

it is printed or pasted from the clipboard.

➢ We could write code that searches for each \n newline character in the string and then

adds the star just after that. But it would be easier to use the split() method to return a

list of strings, one for each line in the original string, and then add the star to the front

of each string in the list.

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT

Introduction to Python Programming (BPLCK105B) Module 3

Page 15

➢ We split the text along its newlines to get a list in which each item is one line of the

text. For each line, we add a star and a space to the start of the line. Now each string in

lines begins with a star

Step 3: Join the Modified Lines

➢ The lines list now contains modified lines that start with stars.

➢ pyperclip.copy() is expecting a single string value, not a list of string values. To make

this single string value, pass lines into the join() method to get a single string joined

from the list’s strings.

➢ When this program is run, it replaces the text on the clipboard with text that has stars at

the start of each line.

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT

Introduction to Python Programming (BPLCK105B) Module 3

Page 16

CHAPTER -2 READ ING AND WRITING FI LES

1. Files and File Paths

➢ A file has two key properties: a filename (usually written as one word) and a path.

➢ The part of the filename after the last period is called the file’s extension and tells you

a file’s type. project.docx is a Word document, and Users, asweigart, and Documents

all refer to folders

➢ Folders can contain files and other folders. For example, project.docx s in the

Documents folder, which is inside the asweigart folder, which is inside the Users folder.

1.1 Backslash on Windows and Forward Slash on OS X and Linux

➢ On Windows, paths are written using backslashes (\) as the separator between folder

names. OS X and Linux, however, use the forward slash (/) as their path separator.

➢ Fortunately, this is simple to do with the os.path.join() function. If you os.path.join()

will return a string with a file path using the correct path separators.

>>> import os

>>> os.path.join('usr', 'bin', 'spam')

'usr\\bin\\spam'

➢ The os.path.join() function is helpful if you need to create strings for filenames.

Program:

>>> myFiles = ['accounts.txt', 'details.csv', 'invite.docx']

>>> for filename in myFiles:

print(os.path.join('C:\\Users\\asweigart', filename))

C:\Users\asweigart\accounts.txt

C:\Users\asweigart\details.csv

C:\Users\asweigart\invite.docx

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT

Introduction to Python Programming (BPLCK105B) Module 3

Page 17

1.2 The Current Working Directory

➢ Every program that runs on your computer has a current working directory, or cwd

➢ Any filenames or paths that do not begin with the root folder are assumed to be under

the current working directory.

➢ can get the current working directory as a string value with the os.getcwd() function

and change it with os.chdir().

>>> import os

>>> os.getcwd()

'C:\\Python34'

>>> os.chdir('C:\\Windows\\System32')

>>> os.getcwd()

'C:\\Windows\\System32'

➢ The current working directory is set to C:\Python34, so the filename project.docx

refers to C:\Python34\project.docx.

➢ When we change the current working directory to C:\Windows, project.docx is

interpreted as C:\Windows\project.docx.

➢ Python will display an error if you try to change to a directory that does not exist.

>>> os.chdir('C:\\ThisFolderDoesNotExist')

Traceback (most recent call last):

File "<pyshell#18>", line 1, in <module>

os.chdir('C:\\ThisFolderDoesNotExist')

FileNotFoundError: [WinError 2] The system cannot find the file specified:

'C:\\ThisFolderDoesNotExist'

1.3 Absolute vs. Relative Paths

There are two ways to specify a file path.

➢ An absolute path, which always begins with the root folder

➢ A relative path, which is relative to the program’s current working

directory

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT

Introduction to Python Programming (BPLCK105B) Module 3

Page 18

• There are also the dot (.) and dot-dot (..) folders. These are not real folders but special

names that can be used in a path

• A single period (“dot”) for a folder name is shorthand for “this directory.” Two

periods (“dot-dot”) means “the parent folder.”

• When the current working directory is set to C:\bacon, the relative paths for the other

folders and files are set as they are in the figure.

Figure 8-2: The relative paths for folders and files in the working

directory C:\bacon

• The .\ at the start of a relative path is optional. For example, .\spam.txt and spam.txt

refer to the same file.

1.4 Creating New Folders with os.makedirs()

• Your programs can create new folders (directories) with the os.makedirs() function.

>>> import os

>>> os.makedirs('C:\\delicious\\walnut\\waffles')

• This will create not just the C:\delicious folder but also a walnut folder inside
C:\delicious and a waffles folder inside C:\delicious\walnut.

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT

Introduction to Python Programming (BPLCK105B) Module 3

Page 19

Figure : The result of os.makedirs('C:\\delicious \\walnut\\waffles')

2. The os.path Module

• The os.path module contains many helpful functions related to filenames and file

paths

• Since os.path is a module inside the os module, you can import it by simply running

import os.

2.1 Handling Absolute and Relative Paths

• The os.path module provides functions for returning the absolute path of a relative path

and for checking whether a given path is an absolute path.

• Calling os.path.abspath(path) will return a string of the absolute path of the argument.

This is an easy way to convert a relative path into an absolute one.

• Calling os.path.isabs(path) will return True if the argument is an absolute path and False

if it is a relative path

• Calling os.path.relpath(path, start) will return a string of a relative path from the start

path to path. If start is not provided, the current working directory is used as the start

path.

file://///walnut/waffles

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT

Introduction to Python Programming (BPLCK105B) Module 3

Page 20

>>> os.path.abspath('.')

'C:\\Python34'

>>> os.path.abspath('.\\Scripts')

'C:\\Python34\\Scripts'

>>> os.path.isabs('.')

False

>>> os.path.isabs(os.path.abspath('.'))

True

• Enter the following calls to os.path.relpath() into the interactive shell

Program:

>>> os.path.relpath('C:\\Windows', 'C:\\')

'Windows'

>>> os.path.relpath('C:\\Windows', 'C:\\spam\\eggs')

'..\\..\\Windows'

>>> os.getcwd()

'C:\\Python34'

• Calling os.path.dirname(path) will return a string of everything that comes before the

last slash in the path argument

• Calling os.path.basename(path) will return a string of everything that comes after the

last slash in the path argument.

Figure: The base name follows the last slash in a path and is the same as the filename. The

dirname is everything before the last slash.

For example

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT

Introduction to Python Programming (BPLCK105B) Module 3

Page 21

>>> path = 'C:\\Windows\\System32\\calc.exe'

>>> os.path.basename(path)

'calc.exe'

>>> os.path.dirname(path)

'C:\\Windows\\System32'

• If you need a path’s dir name and base name together, you can just call os.path.split()

to get a tuple value with these two strings

Program:

>>> calcFilePath = 'C:\\Windows\\System32\\calc.exe'

>>> os.path.split(calcFilePath)

('C:\\Windows\\System32', 'calc.exe')

• you could create the same tuple by calling os.path.dirname() and os.path.basename()

and placing their return values in a tuple.

>>> (os.path.dirname(calcFilePath), os.path.basename(calcFilePath))

('C:\\Windows\\System32', 'calc.exe')

• But os.path.split() is a nice shortcut if you need both values.

• os.path.split() does not take a file path and return a list of strings of each folder. For

that, use the split() string method and split on the string in os.sep.

For example,

>>> calcFilePath.split(os.path.sep)

['C:', 'Windows', 'System32', 'calc.exe']

• On OS X and Linux systems, there will be a blank string at the start of the returned

list:

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT

Introduction to Python Programming (BPLCK105B) Module 3

Page 22

>>> '/usr/bin'.split(os.path.sep)

['', 'usr', 'bin']

2.2 Finding File Sizes and Folder Contents

• folders. The os.path module provides functions for finding the size of a file in bytes

and the files and folders inside a given folder

• Calling os.path.getsize(path) will return the size in bytes of the file in the path

argument.

• Calling os.listdir(path) will return a list of filename strings for each file in the path

argument. (Note that this function is in the os module, not os.path.)

Program:

>>> os.path.getsize('C:\\Windows\\System32\\calc.exe')

776192

>>> os.listdir('C:\\Windows\\System32')

['0409', '12520437.cpx', '12520850.cpx', '5U877.ax', 'aaclient.dll',

--snip--

'xwtpdui.dll', 'xwtpw32.dll', 'zh-CN', 'zh-HK', 'zh-TW', 'zipfldr.dll']

• If you want to find the total size of all the files in this directory, I can use

os.path.getsize() and os.listdir() together.

Program:

>>> totalSize = 0

>>> for filename in os.listdir('C:\\Windows\\System32'):

totalSize = totalSize + os.path.getsize(os.path.join('C:\\Windows\\System32',

filename))

>>> print(totalSize)

1117846456

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT

Introduction to Python Programming (BPLCK105B) Module 3

Page 23

2.3 Checking Path Validity

• The os.path module provides functions to check whether a given path exists and

whether it is a file or folder.

• Calling os.path.exists(path) will return True if the file or folder referred to in the

argument exists and will return False if it does not exist.

• Calling os.path.isfile(path) will return True if the path argument exists and is a file

and will return False otherwise.

• Calling os.path.isdir(path) will return True if the path argument exists and is a folder

and will return False otherwise.

>>> os.path.exists('C:\\Windows')

True

>>> os.path.exists('C:\\some_made_up_folder')

False

>>> os.path.isdir('C:\\Windows\\System32')

True

>>> os.path.isfile('C:\\Windows\\System32')

False

>>> os.path.isdir('C:\\Windows\\System32\\calc.exe')

False

>>> os.path.isfile('C:\\Windows\\System32\\calc.exe')

True

3. The File Reading/Writing Process

➢ Plaintext files contain only basic text characters and do not include font, size, or color

information.

➢ Text files with the .txt extension or Python script files with the .py extension are

examples of plaintext files.

➢ These can be opened with Windows’s Notepad or OS X’s TextEdit application.

➢ Binary files are all other file types, such as word processing documents, PDFs,

images, spreadsheets, and executable programs.

➢ If you open a binary file in Notepad or TextEdit, it will look like scrambled

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT

Introduction to Python Programming (BPLCK105B) Module 3

Page 24

Figure: The Windows calc.exe program opened in Notepad

➢ Since every different type of binary file must be handled in its own way, this book

will not go into reading and writing raw binary files directly.

➢ There are three steps to reading or writing files in Python.

1. Call the open() function to return a File object.

2. Call the read() or write() method on the File object.

3. Close the file by calling the close() method on the File object.

3.1 Opening Files with the open() Function

➢ To open a file with the open() function, you pass it a string path indicating the file you

want to open; it can be either an absolute or relative path.

➢ The open() function returns a File object.

➢ Try it by creating a text file named hello.txt using Notepad or TextEdit. Type Hello

world! as the content of this text file and save it in your user home folder.

>>> helloFile = open('C:\\Users\\your_home_folder\\hello.txt')

➢ If you’re using OS X, enter the following into the interactive shell instead:

>>> helloFile = open('/Users/your_home_folder/hello.txt')

➢ When a file is opened in read mode, Python lets you only read data from the file; you

can’t write or modify it in any way.

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT

Introduction to Python Programming (BPLCK105B) Module 3

Page 25

➢ Read mode is the default mode for files you open in Python.

➢ if you don’t want to rely on Python’s defaults, you can explicitly specify the mode by

passing the string value 'r' as a second argument to open().

➢ open('/Users/asweigart/ hello.txt', 'r') and open('/Users/asweigart/hello.txt')

3.2 Reading the Contents of Files

➢ If you want to read the entire contents of a file as a string value, use the File object’s

read() method

>>> helloContent = helloFile.read()

>>> helloContent

'Hello world!'

➢ Alternatively, you can use the readlines() method to get a list of string values from the

file, one string for each line of text.

➢ For example, create a file named sonnet29.txt in the same directory as hello.txt and

write the following text in it:

➢ Make sure to separate the four lines with line breaks

When, in disgrace with fortune and men's eyes,

I all alone beweep my outcast state,

And trouble deaf heaven with my bootless cries,

And look upon myself and curse my fate,

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT

Introduction to Python Programming (BPLCK105B) Module 3

Page 26

>>> sonnetFile = open('sonnet29.txt')

>>> sonnetFile.readlines()

[When, in disgrace with fortune and men's eyes,\n', ' I all alone beweep my

outcast state,\n', And trouble deaf heaven with my bootless cries,\n', And

look upon myself and curse my fate,']

3.3 Writing to Files

➢ Python allows you to write content to a file in a way similar to how the print() function

“writes” strings to the screen.

➢ You can’t write to a file you’ve opened in read mode, though. Instead, you need to open

it in “write plaintext” mode or “append plaintext” mode, or write mode and append

mode for short.

➢ Write mode will overwrite the existing file and start from scratch, just like when you

overwrite a variable’s value with a new value

➢ Pass 'w' as the second argument to open() to open the file in write mode Append mode,

on the other hand, will append text to the end of the existing file.

➢ Pass 'a' as the second argument to open() to open the file in append mode.

➢ If the filename passed to open() does not exist, both write and append mode will create

a new, blank file.

➢ Example:

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT

Introduction to Python Programming (BPLCK105B) Module 3

Page 27

>>> baconFile = open('bacon.txt', 'w')

>>> baconFile.write('Hello world!\n')

13

>>> baconFile.close()

>>> baconFile = open('bacon.txt', 'a')

>>> baconFile.write('Bacon is not a vegetable.')

25

>>> baconFile.close()

>>> baconFile = open('bacon.txt')

>>> content = baconFile.read()

>>> baconFile.close()

>>> print(content)

Hello world!

Bacon is not a vegetable.

4. Saving Variables with the shelve Module

➢ You can save variables in your Python programs to binary shelf files using the shelve

module.

➢ This way, your program can restore data to variables from the hard drive.

➢ The shelve module will let you add Save and Open features to your program.

➢ For example, if you ran a program and entered some configuration settings, you could

save those settings to a shelf file and then have the program load them the next time it

is run.

>>> import shelve

>>> shelfFile = shelve.open('mydata')

>>> cats = ['Zophie', 'Pooka', 'Simon']

>>> shelfFile['cats'] = cats

>>> shelfFile.close()

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT

Introduction to Python Programming (BPLCK105B) Module 3

Page 28

➢ To read and write data using the shelve module, you first import shelve. Call

shelve.open() and pass it a filename, and then store the returned shelf value in a variable.

➢ create a list cats and write shelfFile['cats'] = cats to store the list in shelfFile as a value

associated with the key 'cats' (like in a dictionary). Then we call close() on shelfFile.

➢ programs can use the shelve module to later reopen and retrieve the data from these

shelf files

➢ Shelf values don’t have to be opened in read or write mode—they can do both once

opened

➢ Program:

>>> shelfFile = shelve.open('mydata')

>>> type(shelfFile)

<class 'shelve.DbfilenameShelf'>

>>> shelfFile['cats']

['Zophie', 'Pooka', 'Simon']

>>> shelfFile.close()

➢ Just like dictionaries, shelf values have keys() and values() methods that will return

list-like values of the keys and values in the shelf

➢ Since these methods return list-like values instead of true lists, you should pass them

to the list() function to get them in list form

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT

Introduction to Python Programming (BPLCK105B) Module 3

Page 29

>>> shelfFile = shelve.open('mydata')

>>> list(shelfFile.keys())

['cats']

>>> list(shelfFile.values())

[['Zophie', 'Pooka', 'Simon']]

>>> shelfFile.close()

5. Saving Variables with the pprint.pformat() Function

➢ pprint.pprint() function will “pretty print” the contents of a list or dictionary to the

screen,

➢ while the pprint.pformat() function will return this same text as a string instead of

printing it.

➢ file will be your very own module that you can import whenever you want to use the

variable stored in it.

➢ For example,

>>> import pprint

>>> cats = [{'name': 'Zophie', 'desc': 'chubby'}, {'name': 'Pooka', 'desc': 'fluffy'}]

>>> pprint.pformat(cats)

"[{'desc': 'chubby', 'name': 'Zophie'}, {'desc': 'fluffy', 'name': 'Pooka'}]"

>>> fileObj = open('myCats.py', 'w')

>>> fileObj.write('cats = ' + pprint.pformat(cats) + '\n')

83

>>> fileObj.close()

➢ Python programs can even generate other Python programs. You can then import

these files into scripts.

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT

Introduction to Python Programming (BPLCK105B) Module 3

Page 30

>>> import myCats

>>> myCats.cats

[{'name': 'Zophie', 'desc': 'chubby'}, {'name': 'Pooka', 'desc': 'fluffy'}]

>>> myCats.cats[0]

{'name': 'Zophie', 'desc': 'chubby'}

>>> myCats.cats[0]['name']

'Zophie'

6. Project: Generating Random Quiz Files

➢ The program does:

o Creates 35 different quizzes.

o Creates 50 multiple-choice questions for each quiz, in random order.

o Provides the correct answer and three random wrong answers for each

question, in random order.

o Writes the quizzes to 35 text files.

o Writes the answer keys to 35 text files.

➢ This means the code will need to do the following:

o Store the states and their capitals in a dictionary.

o Call open(), write(), and close() for the quiz and answer key text files.

o Use random.shuffle() to randomize the order of the questions and multiple-

choice options.

Step 1: Store the Quiz Data in a Dictionary

➢ The first step is to create a skeleton script and fill it with your quiz data. Create a file

named randomQuizGenerator.py,

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT

Introduction to Python Programming (BPLCK105B) Module 3

Page 31

#! python3

randomQuizGenerator.py - Creates quizzes with questions and answers in

random order, along with the answer key.

import random

The quiz data. Keys are states and values are their capitals.

capitals = {'Alabama': 'Montgomery', 'Alaska': 'Juneau', 'Arizona': 'Phoenix',

'Arkansas': 'Little Rock', 'California': 'Sacramento', 'Colorado': 'Denver',

'Connecticut': 'Hartford', 'Delaware': 'Dover', 'Florida': 'Tallahassee',

'Georgia': 'Atlanta', 'Hawaii': 'Honolulu', 'Idaho': 'Boise', 'Illinois':

'Springfield', 'Indiana': 'Indianapolis', 'Iowa': 'Des Moines', 'Kansas':

'Topeka', 'Kentucky': 'Frankfort', 'Louisiana': 'Baton Rouge', 'Maine':

'Augusta', 'Maryland': 'Annapolis', 'Massachusetts': 'Boston', 'Michigan':

'Lansing', 'Minnesota': 'Saint Paul', 'Mississippi': 'Jackson', 'Missouri':

'Jefferson City', 'Montana': 'Helena', 'Nebraska': 'Lincoln', 'Nevada':

'Carson City', 'New Hampshire': 'Concord', 'New Jersey': 'Trenton', 'New

Mexico': 'Santa Fe', 'New York': 'Albany', 'North Carolina': 'Raleigh',

'North Dakota': 'Bismarck', 'Ohio': 'Columbus', 'Oklahoma': 'Oklahoma City',

'Oregon': 'Salem', 'Pennsylvania': 'Harrisburg', 'Rhode Island': 'Providence',

'South Carolina': 'Columbia', 'South Dakota': 'Pierre', 'Tennessee':

'Nashville', 'Texas': 'Austin', 'Utah': 'Salt Lake City', 'Vermont':

'Montpelier', 'Virginia': 'Richmond', 'Washington': 'Olympia', 'West

Virginia': 'Charleston', 'Wisconsin': 'Madison', 'Wyoming': 'Cheyenne'}

Generate 35 quiz files.

for quizNum in range(35):

TODO: Create the quiz and answer key files.

TODO: Write out the header for the quiz.

TODO: Shuffle the order of the states.

TODO: Loop through all 50 states, making a question for each.

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT

Introduction to Python Programming (BPLCK105B) Module 3

Page 32

➢ Since this program will be randomly ordering the questions and answers, you’ll need

to import the random module u to make use of its functions.

➢ The capitals variable v contains a dictionary with US states as keys and their capitals

as values. And since you want to create 35 quizzes, the code that actually generates

the quiz and answer key files (marked with TODO comments for now) will go inside

a for loop that loops 35 times

Step 2: Create the Quiz File and Shuffle the Question Order

➢ The code in the loop will be repeated 35 times—once for each quiz— so you have to

worry about only one quiz at a time within the loop

➢ First you’ll create the actual quiz file.

➢ It needs to have a unique filename and should also have some kind of standard header

in it, with places for the student to fill in a name, date, and class period.

➢ Add the following lines of code to randomQuizGenerator.py:

#! python3

randomQuizGenerator.py - Creates quizzes with questions and answers in

random order, along with the answer key.

--snip—

Generate 35 quiz files.

for quizNum in range(35):

Create the quiz and answer key files.

quizFile = open('capitalsquiz%s.txt' % (quizNum + 1), 'w')

answerKeyFile = open('capitalsquiz_answers%s.txt' % (quizNum + 1), 'w')

Write out the header for the quiz.

w quizFile.write('Name:\n\nDate:\n\nPeriod:\n\n')

quizFile.write((' ' * 20) + 'State Capitals Quiz (Form %s)' % (quizNum + 1))

quizFile.write('\n\n')

Shuffle the order of the states.

states = list(capitals.keys())

random.shuffle(states)

TODO: Loop through all 50 states, making a question for each.

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT

Introduction to Python Programming (BPLCK105B) Module 3

Page 33

Step 3: Create the Answer Options

➢ Now you need to generate the answer options for each question, which will be

multiple choice from A to D.

➢ You’ll need to create another for loop—this one to generate the content for each of

the 50 questions on the quiz

#! python3

randomQuizGenerator.py - Creates quizzes with questions and answers in

random order, along with the answer key.

--snip—

Loop through all 50 states, making a question for each.

for questionNum in range(50):

Get right and wrong answers.

correctAnswer = capitals[states[questionNum]]

wrongAnswers = list(capitals.values())

del wrongAnswers[wrongAnswers.index(correctAnswer)]

wrongAnswers = random.sample(wrongAnswers, 3)

answerOptions = wrongAnswers + [correctAnswer]

random.shuffle(answerOptions)

TODO: Write the question and answer options to the quiz file.

TODO: Write the answer key to a file.

➢ The correct answer is easy to get—it’s stored as a value in the capitals dictionary

➢ This loop will loop through the states in the shuffled states list, from states[0] to

states[49], find each state in capitals, and store that state’s corresponding capital in

correctAnswer.

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT

Introduction to Python Programming (BPLCK105B) Module 3

Page 34

➢ The list of possible wrong answers is trickier. You can get it by duplicating all the

values in the capitals dictionary

➢ deleting the correct answer w, and selecting three random values from this list

➢ The random.sample() function makes it easy to do this selection. Its first argument is

the list you want to select from; the second argument is the number of values you want

to select. The full list of answer options is the combination of these three wrong answers

with the correct answers

➢ Finally, the answers need to be randomized z so that the correct response isn’t always

choice D.

Step 4: Write Content to the Quiz and Answer Key Files

#! python3

randomQuizGenerator.py - Creates quizzes with questions and answers in

random order, along with the answer key.

--snip—

Loop through all 50 states, making a question for each.

for questionNum in range(50):

--snip—

Write the question and the answer options to the quiz file.

quizFile.write('%s. What is the capital of %s?\n' % (questionNum + 1,

states[questionNum]))

for i in range(4):

quizFile.write(' %s. %s\n' % ('ABCD'[i], answerOptions[i]))

quizFile.write('\n')

Write the answer key to a file.

answerKeyFile.write('%s. %s\n' % (questionNum + 1, 'ABCD'[

answerOptions.index(correctAnswer)]))

quizFile.close()

answerKeyFile.close()

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT

Introduction to Python Programming (BPLCK105B) Module 3

Page 35

➢ A for loop that goes through integers 0 to 3 will write the answer options in the

answerOptions list . The expression 'ABCD'[i] at treats the string 'ABCD' as an array

and will evaluate to 'A','B', 'C', and then 'D' on each respective iteration through the

loop.

Name:

Date:

Period:

State Capitals Quiz (Form 1)

1. What is the capital of West Virginia?

A. Hartford

B. Santa Fe

C. Harrisburg

D. Charleston

2. What is the capital of Colorado?

A. Raleigh

B. Harrisburg

C. Denver

D. Lincoln

--snip—

➢ The corresponding capitalsquiz_answers1.txt text file

1. D

2. C

3. A

4. C

--snip--

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT

Introduction to Python Programming (BPLCK105B) Module 3

Page 36

7. Project: Multiclipboard

➢ Say you have the boring task of filling out many forms in a web page or software

with several text fields.

➢ The clipboard saves you from typing the same text over and over again. But only one

thing can be on the clipboard at a time.

➢ The program will save each piece of clipboard text under a keyword.

➢ For example, when you run py mcb.pyw save spam, the current contents of the

clipboard will be saved with the keyword spam.

Here’s what the program does:

• The command line argument for the keyword is checked.

• If the argument is save, then the clipboard contents are saved to the keyword.

• If the argument is list, then all the keywords are copied to the clipboard.

• Otherwise, the text for the keyword is copied to the keyboard. This means the code

will need to do the following:

• Read the command line arguments from sys.argv.

• Read and write to the clipboard.

• Save and load to a shelf file.

Step 1: Comments and Shelf Setup

#! python3

mcb.pyw - Saves and loads pieces of text to the clipboard.

Usage: py.exe mcb.pyw save <keyword> - Saves clipboard to keyword.

py.exe mcb.pyw <keyword> - Loads keyword to clipboard.

py.exe mcb.pyw list - Loads all keywords to clipboard.

import shelve, pyperclip, sys

mcbShelf = shelve.open('mcb')

TODO: Save clipboard content.

TODO: List keywords and load content.

mcbShelf.close()

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT

Introduction to Python Programming (BPLCK105B) Module 3

Page 37

Step 2: Save Clipboard Content with a Keyword

➢ The program does different things depending on whether the user wants to save text to

a keyword, load text into the clipboard, or list all the existing keywords.

#! python3

mcb.pyw - Saves and loads pieces of text to the clipboard.

--snip—

Save clipboard content.

if len(sys.argv) == 3 and sys.argv[1].lower() == 'save':

mcbShelf[sys.argv[2]] = pyperclip.paste()

elif len(sys.argv) == 2:

TODO: List keywords and load content.

mcbShelf.close()

➢ If the first command line argument (which will always be at index 1 of the sys.argv

list) is 'save'

➢ The second command line argument is the keyword for the current content of the

clipboard.

➢ The keyword will be used as the key for mcbShelf, and the value will be the text

currently on the clipboard

Step 3: List Keywords and Load a Keyword’s Content

➢ The user wants to load clipboard text in from a keyword, or they want a list of all

available keywords

Prof. Manjusha, Asst Prof., Dept of CSE, SVIT

Introduction to Python Programming (BPLCK105B) Module 3

Page 38

#! python3

mcb.pyw - Saves and loads pieces of text to the clipboard.

--snip—

Save clipboard content.

if len(sys.argv) == 3 and sys.argv[1].lower() == 'save':

mcbShelf[sys.argv[2]] = pyperclip.paste()

elif len(sys.argv) == 2:

List keywords and load content.

if sys.argv[1].lower() == 'list':

pyperclip.copy(str(list(mcbShelf.keys())))

elif sys.argv[1] in mcbShelf:

pyperclip.copy(mcbShelf[sys.argv[1]])

mcbShelf.close()

➢ If there is only one command line argument, first let’s check whether it’s 'list'

➢ If so, a string representation of the list of shelf keys will be copied to the clipboard

➢ The user can paste this list into an open text editor to read it.

➢ Otherwise, you can assume the command line argument is a keyword. If this keyword

exists in the mcbShelf shelf as a key, you can load the value onto the clipboard

