
 MODULE IV ARITHMETIC

1 Dr. Nagashree N. Associate Professor, CSE, SVIT

MODULE 4: ARITHMETIC OPERATIONS

o Numbers, Arithmetic Operations And Characters
o Addition and subtraction of signed numbers
o Fast Adders
o Multiplication
o Division

NUMBERS, ARITHMETIC OPERATIONS AND CHARACTERS
Computer stores information in binary form 0s and 1s. Information are stored in bits – binary digits
. Common way to represent characters and numbers in a computer is in the form of string of bits.

NUMBER REPRESENTATION
• Numbers can be represented in 3 formats:

1) Sign and magnitude
2) 1's complement
3) 2's complement

• In all three formats, MSB=0 for +ve numbers & MSB=1 for -ve numbers.
• Positive number have the same representation in all 2 systems, but representation of –ve number

varies.

• In sign-and-magnitude system,
negative value is obtained by changing the MSB from 0 to 1 of the corresponding positive value.
For ex, +5 is represented by 0101 &
-5 is represented by 1101.

• In 1's complement system,
negative values are obtained by complementing each bit of the corresponding positive number.
For ex, -5 is obtained by complementing each bit in 0101 to yield 1010.

• In 2's complement system,
Negative values are obtained by complementing each bit and then adding 1 to complemented value.

For ex, -5 is obtained by complementing each bit in 0101 & then adding 1 to yield
1011. 2's complement system yields the most efficient way to carry out addition/subtraction
operations.

 MODULE IV ARITHMETIC

2 Dr. Nagashree N. Associate Professor, CSE, SVIT

ADDITION OF POSITIVE NUMBERS
• Consider adding two 1-bit numbers.
• The sum of 1 & 1 requires the 2-bit vector 10 to represent the value 2. We say that sum is 0 and the
carry-out is 1.

ADDITION & SUBTRACTION OF SIGNED NUMBERS

2’s complement system is most efficient method for performing addition and subtraction operations.

• Following are the two rules for addition and subtraction of n-bit signed numbers using the 2's
complement representation system .
Rule 1:
 To Add two numbers, add their n-bits and ignore the carry-out signal from the MSB position.

 Result is correct, if it lies in the range -2n-1 to +2n-1-1.

Rule 2:
 To Subtract two numbers X and Y (that is to perform X-Y), take the 2's complement of Y and
then add it to X as in rule 1.

 Result is correct, if it lies in the range (2n-1) to +(2n-1-1).

 MODULE IV ARITHMETIC

3 Dr. Nagashree N. Associate Professor, CSE, SVIT

• When the result of an arithmetic operation is outside the representable-range, an arithmetic overflow
is said to occur.

• To represent a signed in 2's complement form using a larger number of bits, repeat the sign bit as
many times as needed to the left. This operation is called sign extension.

OVERFLOW IN INTEGER ARITHMETIC

• When result of an arithmetic operation is outside the representable-range, an arithmetic overflow
is said to occur.
• For example: If we add two numbers +7 and +4, then the output sum S is 1011(+0111+0100), which
is the code for -5, an incorrect result.

• An overflow occurs in following 2 cases
1) Overflow can occur only when adding two numbers that have the same sign, but the result has the
other sign. (Eg – overflow occurs when, Adding of 2 +ve numbers, gives –ve number as result).

2) When result of an arithmetic operation is outside the representable-range, an overflow is said to
occur.

3) The carry-out signal from the sign-bit position is not a sufficient indicator of overflow.

 MODULE IV ARITHMETIC

4 Dr. Nagashree N. Associate Professor, CSE, SVIT

ADDITION & SUBTRACTION OF SIGNED NUMBERS n-BIT RIPPLE CARRY ADDER
• A cascaded connection of n full-adder blocks can be used to add 2-bit numbers.
• Each stage of addition takes two bits to be added along with the carry-in bit.
• Since carries must propagate (or ripple) through cascade, the configuration is called an n-bit ripple
carry adder.
• Ci is the carry-in bit to the ith stage, which produces the sum Si and an carry-out bit Ci+1

Circuits for Si and Ci+1 can be represented as -

The circuits of Si and Ci+1 are in the Full Adder (FA).

 MODULE IV ARITHMETIC

5 Dr. Nagashree N. Associate Professor, CSE, SVIT

The above circuit is to add two one bits. A number of such circuits are cascaded to add two ‘n’bit
numbers X and Y. Such a cascaded circuit where carry bit ripples from one FA to another is called a
“n bit ripple – carry adder”.

To add k such n – bit numbers, the below circuit can be used -

ADDITION/SUBTRACTION LOGIC UNIT

• The n-bit adder can be used to add 2's complement numbers X and Y .
• Overflow can only occur when the signs of the 2 operands are the same.
 Overflow = x n-1 y n-1 S n-1 + x n-1 y n-1 S n-1
• In order to perform the subtraction operation X-Y on 2's complement numbers X and Y; we form
the 2's complement of Y and add it to X.
• Addition or subtraction operation is done based on value applied to the Add/Sub input control-
line.
• Control-line=0 for addition, so that Y value is unchanged and is sent as one of the adder inputs.
• Control-line=1 for subtraction, the Y value is complemented. Carry bit is also set to ‘1’ so as to add
‘1’ to the first bit to find the 2's complement of Y.

 MODULE IV ARITHMETIC

6 Dr. Nagashree N. Associate Professor, CSE, SVIT

DESIGN OF FAST ADDERS
• Drawback of ripple carry adder: Delay occurs in n-bit ripple carry adder structure. The delay
depends on number of gates used in the path from inputs to outputs and also on the electronic
technology used in the adders. If the adder is used to implement the addition/subtraction, all sum bits
are available in 2n gate delays.
• Two approaches can be used to reduce delay in adders:

1) Use the fastest possible electronic-technology in implementing the ripple-carry design, use of carry-
Look ahead addition.

2) Use an augmented logic-gate network structure.

CARRY-LOOKAHEAD ADDITIONS (CLA)

During addition, bits of two operands can be added instantly, but problem is with the carry bit. The
previous carry-bit (carry-in bit) is required for operation of ith stage.

In carry-look ahead addition, the operation can take place simultaneously in any stage, ones the Co
(carry bit of 1st stage) is known.

• The logic expression for si(sum) and ci+1(carry-out) of stage i are
 𝑠𝑠𝑖𝑖 = 𝑥𝑥𝑖𝑖 ⊕ 𝑦𝑦𝑖𝑖⨁𝑐𝑐𝑖𝑖 -----------------(1)

 𝑐𝑐𝑖𝑖+1 = 𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖 + 𝑥𝑥𝑖𝑖𝑐𝑐𝑖𝑖 + 𝑦𝑦𝑖𝑖𝑐𝑐𝑖𝑖 -------------(2)

 MODULE IV ARITHMETIC

7 Dr. Nagashree N. Associate Professor, CSE, SVIT

• Factoring (2), gives
Ci+1=xiyi+(xi+yi)ci
Can be written as, Ci+1=Gi+PiCi
where Gi=xiyi and Pi=xi+yi

• The expressions Gi and Pi are called generate and propagate functions respectively.

• If Gi=1, then Ci+1=1, independent of the input carry ci. This occurs when both xi and yi are 1.
Propagate function means that an input-carry will produce an output-carry when either xi=1 or yi=1.
• All Gi and Pi functions can be formed independently and in parallel in one logic-gate delay.

• Consider the design of a 4-bit adder. The carries can be implemented as,
 c1=G0+P0c0

c2=G1+P1G0+P1P0c0
c3=G2+P2G1+P2P1G0+P2P1P0c0
c4=G3+P3G2+P3P2G1+P3P2P1G0+P3P2P1P0c0

• Expanding ci terms of i-1 subscripted variables and substituting into the ci+1 expression, we obtain
Ci+1=Gi+PiGi-1+PiPi-1Gi-2.+P1G0+PiPi-1 . . . P0c0

 Conclusion: Delay through the adder is 3 gate delays for all carry-bits & 4 gate delays for all sum-bits.

• The carries are implemented in the block labeled carry-lookahead logic. An adder implemented in
this form is called a Carry-Lookahead Adder.
• Limitation: If we try to extend the carry-lookahead adder for longer operands, we run into a problem
of gate fan-in constraints.

 MODULE IV ARITHMETIC

8 Dr. Nagashree N. Associate Professor, CSE, SVIT

 MODULE IV ARITHMETIC

9 Dr. Nagashree N. Associate Professor, CSE, SVIT

HIGHER-LEVEL GENERATE & PROPAGATE FUNCTIONS

• 16-bit adder can be built from four 4-bit adder blocks, as shown below.
• These blocks provide new output functions defined as 𝐺𝐺𝑘𝑘𝐼𝐼 and 𝑃𝑃𝑘𝑘𝐼𝐼, where k=0 for the first 4-bit
block, k=1 for the second 4-bit block and so on.

• In the first block,
𝑃𝑃0𝐼𝐼=P3P2P1P0

& 𝐺𝐺0𝐼𝐼=G3+P3G2+P3P2G1+P3P2P1G0

• The first-level Gi and Pi functions determine whether bit stage i generates or propagates a carry,
and the second level Gk and Pk functions determine whether block k generates or propagates a carry.
• Carry c16 is formed by one of the carry-lookahead circuits as
c16=G3+P3G2+P3P2G1+P3P2P1G0+P3P2P1P0c0
• Conclusion: All carries are available 5 gate delays after X, Y and c0 are applied as inputs.

 MODULE IV ARITHMETIC

10 Dr. Nagashree N. Associate Professor, CSE, SVIT

MULTIPLICATION OF POSITIVE NUMBERS

The product of two n – bit numbers is 2n digits, ie. the product of two 4 – bit numbers is 8 – bits.

The above method can be implemented as shown below, here m0, m1,m2,m3 are the multiplicands,
q0,q1,q2,q3 are the multipliers, PP0,PP1,PP2,PP3 are the partial products and

p0,p1,p2,p3,p4,p5,p6,p7 are the partial products.

The square box represents a single cell
that implements partial product for one
bit as sown:

 MODULE IV ARITHMETIC

11 Dr. Nagashree N. Associate Professor, CSE, SVIT

• The main component in each cell is a full adder(FA)..
• The AND gate in each cell determines whether a multiplicand bit mj, is added to the incoming
partial- product bit, based on the value of the multiplier bit qi (Figure 9.6).

SEQUENTIAL CIRCUIT BINARY MULTIPLIER

• The simplest method to perform multiplication is to use the adder circuitry in the ALU for a number
of sequential steps.
• Registers A and Q combined hold PPi(partial product)
while the multiplier bit qi generates the signal Add/Noadd.
• The carry-out from the adder is stored in flip-flop C (Figure 9.7).
• Procedure for multiplication:
1) Multiplier is loaded into register Q, Multiplicand is loaded into register M and
C & A are cleared to 0.
2) If q0=1, add M to A and store sum in A. Then C, A and Q are shifted right one bit-position.
If q0=0, no addition performed and C, A & Q are shifted right one bit-position.
3) Repeat step 2 for n cycles (where n is the number of bits in operand), the high-order half of the
product is held in register A and the low-order half is held in register Q.

 MODULE IV ARITHMETIC

12 Dr. Nagashree N. Associate Professor, CSE, SVIT

SIGNED OPERAND MULTIPLICATION BOOTH ALGORITHM
• This algorithm
→ generates a 2n-bit product
→ treats both positive & negative 2's-complement n-bit operands uniformly.
→ reduces the number of partial products, when there is continuous number of 1’s.

• Attractive feature: This algorithm achieves some efficiency in the number of addition required when
the multiplier has a few large blocks of 1s.
• Multiplication of 45 and 30 in normal and Booth algorithm method-

The multiplier is recoded using the below table -

While recoding the multiplier, assume ‘0’ to the right of LSB.

 MODULE IV ARITHMETIC

13 Dr. Nagashree N. Associate Professor, CSE, SVIT

Eg: if multiplier is 0011110, then for recoding, put extra ‘0’ to the right of LSB.
Ie it becomes, 00111100, now recode as per the above table.
The recoded multiplier is, 0 +1 0 0 0 -1 0

When multiplier is ,
+1 – do the usual multiplication, ie. partial product is the multiplicand.
-1 – partial product is the 2’s compliment of the multiplicand.

Note: Sign extension to be done, for the partial products.

 MODULE IV ARITHMETIC

14 Dr. Nagashree N. Associate Professor, CSE, SVIT

FAST MULTIPLICATION
Two techniques to speed up the multiplication process –

1. Bit-Pair Recoding Of Multipliers – reduces the maximum number of summands (partial products) to
n/2 for n-bit multiplier.

2. Carry-Save addition of summands – reduces the time needed to add the summands.

BIT-PAIR RECODING OF MULTIPLIERS
• This method
→ derived from the booth algorithm
→ reduces the number of summands by a factor of 2
• Group the Booth-recoded multiplier bits in pairs. Suppose into [i j]
• Then the bit-pair recoded multiplier is obtained by (2*i +j)
• The pair (+1 -1) is equivalent to the pair (0 +1).

 MODULE IV ARITHMETIC

15 Dr. Nagashree N. Associate Professor, CSE, SVIT

Direct recoding from multiplier to Bit-pair bits is done by using the below table -

 MODULE IV ARITHMETIC

16 Dr. Nagashree N. Associate Professor, CSE, SVIT

When multiplier is,

o -2 – put ‘0’ as LSB & then 2’s complement of multiplicand.
o -1 – 2’s complement of multiplicand.
o +1 – only multiplicand (usual).
o +2 – put ‘0’ as LSB & then multiplicand.

Note: Sign extension to be done, for the partial products.

CARRY-SAVE ADDITION OF SUMMANDS
• Consider the array for 4*4 multiplication.
• Instead of letting the carries ripple along the rows, they are "saved" and introduced into the next
row, at the correct weighted positions. Thus reduces the number of summands and speeds up the
addition process.

 MODULE IV ARITHMETIC

17 Dr. Nagashree N. Associate Professor, CSE, SVIT

• The full adder is input with three partial bit products in the first row.
• Multiplication requires the addition of several summands.
• Carry- Save Addition (CSA) speeds up the addition process.

 MODULE IV ARITHMETIC

18 Dr. Nagashree N. Associate Professor, CSE, SVIT

• Consider the array for 4x4 multiplication shown in fig 9.16.
• First row consisting of just the AND gates that implement the bit products m3q0, m2q0, m1q0 and

m0q0.
• The delay through the carry-save array is somewhat less than delay through the ripple-carry array.
This is because the S and C vector outputs from each row are produced in parallel in one full-adder
delay.
• Consider the addition of many summands in fig 9.18.
• Group the summands in threes and perform carry-save addition on each of these groups in parallel
to generate a set of S and C vectors in one full-adder delay
• Group all of the S and C vectors into threes, and perform carry-save addition on them, generating a
further set of S and C vectors in one more full-adder delay
• Continue with this process until there are only two vectors remaining
• The final 2 vectors, are added in a RCA (Ripple Carry Adder) or CLA (Carry Look-ahead Adder)
to produce the desired product.
• When the number of summands is large, the time saved is proportionally much greater.
• Delay: AND gate + 2 gate/CSA level + CLA gate delay, Eg., 6 bit number require 15 gate delay,
array 6x6 require 6(n-1)-1 = 29 gate Delay.

• In general, CSA takes 1.7 log2k-1.7 levels of CSA to reduce k summands.

INTEGER DIVISION
• An n-bit positive-divisor is loaded into register M.
An n-bit positive-dividend is loaded into register Q at the start of the operation.
Register A is set to 0 (Figure 9.21).
• After division operation, the n-bit quotient is in register Q, and the remainder is in register A.

 MODULE IV ARITHMETIC

19 Dr. Nagashree N. Associate Professor, CSE, SVIT

 MODULE IV ARITHMETIC

20 Dr. Nagashree N. Associate Professor, CSE, SVIT

RESTORING DIVISION
The above logic circuit arrangement implements non-restoring and restoring division. The non-
restoring division algorithm is as follows –

Step 1: Initialize M – Divisor, Q – Dividend (n bits), A with 0s
Step 2: Repeat step 3 to step 5 - n times
Step 3: Shift A and Q left, by one binary position
Step 4: Subtract M from A, (A=A-M)
Step 5: If sign of A is 1, set q0 to 0 and add M back to A (restore A);

Elseif sign of A is 0, set q0 to 1
Step 6: Finally n bit Quotient is present in register Q and Remainder is present in register A.

 MODULE IV ARITHMETIC

21 Dr. Nagashree N. Associate Professor, CSE, SVIT

NON - RESTORING DIVISION

The above logic circuit arrangement implements non-restoring and restoring division
Step 1: Initialize M – Divisor, Q – Dividend (n bits), A with 0s
Step 2: Repeat step 3 - n times
Step 3: If sign of A is 0, shift A and Q left by 1 bit and subtract M from A, accordingly set q0 bit;
 Elseif sign of A is 1, shift A and Q left and add M to A, accordingly set q0 bit
Step 4: After n cycles, if sign of A is 1, add M to A.
Step 5: Finally Quotient is present in register Q and Remainder is present in register A.

 MODULE IV ARITHMETIC

22 Dr. Nagashree N. Associate Professor, CSE, SVIT

 6. Problems on Booth algorithm, Bit-pair recoding, restoring division and non-restoring division.

8. Explain the circuit arrangement for binary division.
9. Explain the 16 bit carry look ahead adder using 4 – bit adder. Also unite the expression for Ci+1.
10. Explain the concept of carry save addition for multiplication operation M xQ =P for 4-bit

operands with diagram and suitable example.
11. Explain Generate and Propagate functions in carry look ahead adder.
12. Explain the design of a 4-bit carry look-ahead adder.
13. Design a logic circuit to perform addition/subtraction of two n bit numbers X and Y.
14. Design a ‘n’ bit carry propagation adder circuit to add ‘k’ n bit numbers.

 MODULE IV ARITHMETIC

23 Dr. Nagashree N. Associate Professor, CSE, SVIT

Problem 1:
Represent the decimal values 5, -2, 14, -10, 26, -19, 51 and -43 as signed 7-bit numbers in the
following binary formats:

(a) sign-and-magnitude
(b) 1’s-complement
(c) 2’s-complement

Solution:
The three binary representations are given as:

Problem 2:
(a) Convert the following pairs of decimal numbers to 5-bit 2’s-complement numbers, then add
them. State whether or not overflow occurs in each case.

a) 5 and 10 b) 7 and 13
c) –14 and 11 d) –5 and 7
e) –3 and –8
(b) Repeat Problem 1.7 for the subtract operation, where the second number of each pair is to
be subtracted from the first number. State whether or not overflow occurs in each case.
Solution:
(a)

(b) To subtract the second number, form its 2's-complement and add it to the first number.

 MODULE IV ARITHMETIC

24 Dr. Nagashree N. Associate Professor, CSE, SVIT

 MODULE IV ARITHMETIC

25 Dr. Nagashree N. Associate Professor, CSE, SVIT

Problem 3:
Perform following operations on the 6-bit signed numbers using 2's complement representation
system. Also indicate whether overflow has occurred.

Solution:

 MODULE IV ARITHMETIC

26 Dr. Nagashree N. Associate Professor, CSE, SVIT

 MODULE IV ARITHMETIC

27 Dr. Nagashree N. Associate Professor, CSE, SVIT

Problem 4:
Perform signed multiplication of following 2’s complement numbers using Booth’s algorithm. (a)
A=010111 and B=110110 (b) A=110011 and B=101100
(c) A=110101 and B=011011 (d) A=001111 and B=001111 (e) A=10100 and B=10101
 (f) A=01110 and B=11000
Solution:

 MODULE IV ARITHMETIC

28 Dr. Nagashree N. Associate Professor, CSE, SVIT

Problem 5:
Perform signed multiplication of following 2’s complement numbers using bit-pair recoding method.
(a) A=010111 and B=110110 (b) A=110011 and B=101100
(c) A=110101 and B=011011 (d) A=001111 and B=001111
Solution:

 MODULE IV ARITHMETIC

29 Dr. Nagashree N. Associate Professor, CSE, SVIT

Problem 6:
Given A=10101 and B=00100, perform A/B using restoring division algorithm.
Solution:

Problem 7:
Given A=10101 and B=00101, perform A/B using non-restoring division algorithm.

 MODULE IV ARITHMETIC

30 Dr. Nagashree N. Associate Professor, CSE, SVIT

Solution:

	NUMBERS, ARITHMETIC OPERATIONS AND CHARACTERS
	Computer stores information in binary form 0s and 1s. Information are stored in bits – binary digits . Common way to represent characters and numbers in a computer is in the form of string of bits.
	NUMBER REPRESENTATION
	• In sign-and-magnitude system,
	• In 1's complement system,
	• In 2's complement system,
	ADDITION OF POSITIVE NUMBERS
	ADDITION & SUBTRACTION OF SIGNED NUMBERS
	2’s complement system is most efficient method for performing addition and subtraction operations.
	Rule 1:
	Rule 2:
	OVERFLOW IN INTEGER ARITHMETIC
	ADDITION & SUBTRACTION OF SIGNED NUMBERS n-BIT RIPPLE CARRY ADDER
	ADDITION/SUBTRACTION LOGIC UNIT
	DESIGN OF FAST ADDERS
	CARRY-LOOKAHEAD ADDITIONS (CLA)
	HIGHER-LEVEL GENERATE & PROPAGATE FUNCTIONS
	MULTIPLICATION OF POSITIVE NUMBERS
	The product of two n – bit numbers is 2n digits, ie. the product of two 4 – bit numbers is 8 – bits.
	SEQUENTIAL CIRCUIT BINARY MULTIPLIER
	SIGNED OPERAND MULTIPLICATION BOOTH ALGORITHM
	FAST MULTIPLICATION
	Two techniques to speed up the multiplication process –
	1. Bit-Pair Recoding Of Multipliers – reduces the maximum number of summands (partial products) to n/2 for n-bit multiplier.
	2. Carry-Save addition of summands – reduces the time needed to add the summands.
	CARRY-SAVE ADDITION OF SUMMANDS
	INTEGER DIVISION
	RESTORING DIVISION
	The above logic circuit arrangement implements non-restoring and restoring division. The non-restoring division algorithm is as follows –
	Step 1: Initialize M – Divisor, Q – Dividend (n bits), A with 0s
	Step 2: Repeat step 3 to step 5 - n times
	Step 3: Shift A and Q left, by one binary position
	Step 4: Subtract M from A, (A=A-M)
	Step 5: If sign of A is 1, set q0 to 0 and add M back to A (restore A);
	Elseif sign of A is 0, set q0 to 1
	Step 6: Finally n bit Quotient is present in register Q and Remainder is present in register A.
	NON - RESTORING DIVISION
	The above logic circuit arrangement implements non-restoring and restoring division
	Problem 1:
	Solution:
	Problem 2:
	Solution:
	Problem 3:
	Solution:
	Solution:
	Solution:
	Solution:
	Solution:

