MODULE 4: ARITHMETIC OPERATIONS

- o Numbers, Arithmetic Operations And Characters
- o Addition and subtraction of signed numbers
- o Fast Adders
- o Multiplication
- \circ Division

NUMBERS, ARITHMETIC OPERATIONS AND CHARACTERS

Computer stores information in binary form 0s and 1s. Information are stored in **bits** – binary digits . Common way to represent characters and numbers in a computer is in the form of string of bits.

NUMBER REPRESENTATION

- Numbers can be represented in 3 formats:
 - 1) Sign and magnitude
 - 2) 1's complement
 - 3) 2's complement
- In all three formats, MSB=0 for +ve numbers & MSB=1 for -ve numbers.
- Positive number have the same representation in all 2 systems, but representation of -ve number varies.
- In sign-and-magnitude system,

negative value is obtained by changing the MSB from 0 to 1 of the corresponding positive value. For ex, +5 is represented by $\underline{0}101 \&$ -5 is represented by $\underline{1}101$.

• In 1's complement system,

negative values are obtained by complementing each bit of the corresponding positive number. For ex, -5 is obtained by complementing each bit in 0101 to yield 1010.

• In 2's complement system,

Negative values are obtained by complementing each bit and then adding 1 to complemented value. For ex, -5 is obtained by complementing each bit in 0101 & then adding 1 to yield 1011. 2's complement system yields the most efficient way to carry out addition/subtraction operations.

EduKannada.Com

В		values represented	
$b_3 b_2 b_1 b_0$	Sign and magnitude	1's complement	2's complement
0 1 1 1	+7	+ 7	+7
0110	+6	+ 6	+ 6
0101	+ 5	+ 5	+ 5
0100	+ 4	+ 4	+ 4
0011	+ 3	+ 3	+ 3
0010	+2	+ 2	+ 2
0001	+ 1	+ 1	+ 1
0000	+0	+ 0	+ 0
1000	-0	-7	- 8
1001	- 1	-6	-7
1010	-2	-5	- 6
1011	-3	- 4	- 5
1100	- 4	-3	- 4
1101	-5	-2	- 3
1110	-6	- 1	- 2
1111	-7	-0	- 1

Figure 1.3 Binary, signed-integer representations.

ADDITION OF POSITIVE NUMBERS

• Consider adding two 1-bit numbers.

• The sum of 1 & 1 requires the 2-bit vector 10 to represent the value 2. We say that sum is 0 and the carry-out is 1.

Figure 2.2	Addition of	1-bit numbers.	Carry-out
			+
0	1	1	10
+ 0	+ 0	+ 1	+ 1
0	1	0	1

ADDITION & SUBTRACTION OF SIGNED NUMBERS

2's complement system is most efficient method for performing addition and subtraction operations.

• Following are the two rules for addition and subtraction of n-bit signed numbers using the 2's complement representation system .

Rule 1:

- > To Add two numbers, add their n-bits and ignore the carry-out signal from the MSB position.
- > Result is correct, if it lies in the range -2^{n-1} to $+2^{n-1}-1$.

Rule 2:

To Subtract two numbers X and Y (that is to perform X-Y), take the 2's complement of Y and then add it to X as in rule 1.

> Result is correct, if it lies in the range (2^{n-1}) to $+(2^{n-1}-1)$.

• When the result of an arithmetic operation is outside the representable-range, an arithmetic **overflow** is said to occur.

• To represent a signed in 2's complement form using a larger number of bits, repeat the sign bit as many times as needed to the left. This operation is called **sign extension**.

OVERFLOW IN INTEGER ARITHMETIC

• When result of an arithmetic operation is outside the representable-range, an **arithmetic overflow** is said to occur.

• For example: If we add two numbers +7 and +4, then the output sum S is 1011(+0111+0100), which is the code for -5, an incorrect result.

• An overflow occurs in following 2 cases

1) Overflow can occur only when adding two numbers that have the same sign, but the result has the other sign. (Eg – overflow occurs when, Adding of 2 +ve numbers, gives –ve number as result).

2) When result of an arithmetic operation is outside the representable-range, an **overflow** is said to occur.

3) The carry-out signal from the sign-bit position is not a sufficient indicator of overflow.

ADDITION & SUBTRACTION OF SIGNED NUMBERS n-BIT RIPPLE CARRY ADDER

• A cascaded connection of n full-adder blocks can be used to add 2-bit numbers.

• Each stage of addition takes two bits to be added along with the carry-in bit.

• Since carries must propagate (or ripple) through cascade, the configuration is called an n-bit ripple carry adder.

• Ci is the carry-in bit to the ith stage, which produces the sum Si and an carry-out bit Ci+1

x _i	y _i	Carry-in c _i	Sum s _i	Carry-out c_{i+1}	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	
$c_{i+1} =$	$y_i c_i + $	$x_i c_i + x_i y_i$			
xample:				1	
$\frac{X}{Y} = \frac{7}{+6}$	$= \frac{+0}{1}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Carry-or C_{i+1}$	ut $\underbrace{x_i}_{S_i}$	Carry-ir c _i
				Legend for stage i	
Figure 9	2.1	oaic specification	for a stage	of binary addition.	

Circuits for Si and $C_{i\!+\!1}$ can be represented as -

The circuits of Si and Ci+1 are in the Full Adder (FA).

The above circuit is to add two one bits. A number of such circuits are cascaded to add two 'n'bit numbers X and Y. Such a cascaded circuit where carry bit ripples from one FA to another is called a "n bit ripple – carry adder".

To add k such n - bit numbers, the below circuit can be used -

(c) Cascade of k n-bit addersFigure 9.2 Logic for addition of binary numbers.

ADDITION/SUBTRACTION LOGIC UNIT

• The n-bit adder can be used to add 2's complement numbers X and Y .

• Overflow can only occur when the signs of the 2 operands are the same.

 $Overflow = x_{n-1} \overline{y_{n-1}} \overline{S_{n-1}} + \overline{x_{n-1}} \overline{y_{n-1}} \overline{S_{n-1}}$

• In order to perform the subtraction operation X-Y on 2's complement numbers X and Y; we form the 2's complement of Y and add it to X.

• Addition or subtraction operation is done based on value applied to the Add/Sub input controlline.

- Control-line=0 for addition, so that Y value is unchanged and is sent as one of the adder inputs.
- Control-line=1 for subtraction, the Y value is complemented. Carry bit is also set to '1' so as to add
- '1' to the first bit to find the 2's complement of Y.

MODULE IV

DESIGN OF FAST ADDERS

• **Drawback of ripple carry adder:** Delay occurs in n-bit ripple carry adder structure. The delay depends on number of gates used in the path from inputs to outputs and also on the electronic technology used in the adders. If the adder is used to implement the addition/subtraction, all sum bits are available in 2n gate delays.

• Two approaches can be used to reduce delay in adders:

- 1) Use the fastest possible electronic-technology in implementing the ripple-carry design, use of carry-Look ahead addition.
- 2) Use an augmented logic-gate network structure.

CARRY-LOOKAHEAD ADDITIONS (CLA)

During addition, bits of two operands can be added instantly, but problem is with the carry bit. The previous carry-bit (carry-in bit) is required for operation of ith stage.

In carry-look ahead addition, the operation can take place simultaneously in any stage, ones the Co (carry bit of 1st stage) is known.

• The logic expression for si(sum) and ci+1(carry-out) of stage i are

 $c_{i+1} = x_i y_i + x_i c_i + y_i c_i$ -----(2)

• Factoring (2), gives

C_{i+1}=xiyi+(xi+yi)ci Can be written as, C_{i+1}=Gi+PiCi where Gi=xiyi and Pi=xi+yi

• The expressions Gi and Pi are called generate and propagate functions respectively.

• If $G_i=1$, then $C_{i+1}=1$, independent of the input carry ci. This occurs when both xi and yi are 1. Propagate function means that an input-carry will produce an output-carry when either xi=1 or yi=1. • All Gi and Pi functions can be formed independently and in parallel in one logic-gate delay.

• Consider the design of a 4-bit adder. The carries can be implemented as,

c1=G0+P0c0 c2=G1+P1G0+P1P0c0 c3=G2+P2G1+P2P1G0+P2P1P0c0

c4=G3+P3G2+P3P2G1+P3P2P1G0+P3P2P1P0c0

• Expanding ci terms of i-1 subscripted variables and substituting into the ci+1 expression, we obtain $C_{i+1}=Gi+PiGi-1+PiPi-1Gi-2...+P1G0+PiPi-1...P0c0$

Conclusion: Delay through the adder is 3 gate delays for all carry-bits & 4 gate delays for all sum-bits.

• The carries are implemented in the block labeled carry-lookahead logic. An adder implemented in this form is called a **Carry-Lookahead Adder**.

• Limitation: If we try to extend the carry-lookahead adder for longer operands, we run into a problem of gate fan-in constraints.

HIGHER-LEVEL GENERATE & PROPAGATE FUNCTIONS

• 16-bit adder can be built from four 4-bit adder blocks, as shown below.

• These blocks provide new output functions defined as G_k^I and P_k^I , where k=0 for the first 4-bit block, k=1 for the second 4-bit block and so on.

• In the first block,

 $P_0^{I} = P_3P_2P_1P_0$ & $G_0^{I} = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0$

The first-level Gi and Pi functions determine whether bit stage i generates or propagates a carry, and the second level Gk and Pk functions determine whether block k generates or propagates a carry.
Carry c16 is formed by one of the carry-lookahead circuits as c16=G3+P3G2+P3P2G1+P3P2P1G0+P3P2P1P0c0

• Conclusion: All carries are available 5 gate delays after X, Y and c0 are applied as inputs.

Figure 9.5 A 16-bit carry-lookahead adder built from 4-bit adders (see Figure 9.4b).

MULTIPLICATION OF POSITIVE NUMBERS

The product of two n - bit numbers is 2n digits, ie. the product of two 4 - bit numbers is 8 - bits.

			×	1 1	1 0	0 1	$\frac{1}{1}$	(13) Multiplicand M(11) Multiplier Q
		8	1	1	1	0	1	
	3	0	0	0	0	1		
82	1	1	0	1			134	
1	0	0	0	1	1	1	1	(143) Product P

(a) Manual multiplication algorithm

The above method can be implemented as shown below, here m0, m1,m2,m3 are the multiplicands, q0,q1,q2,q3 are the multipliers, PP0,PP1,PP2,PP3 are the partial products and

square box represents a single cell implements partial product for one sown:

• The main component in each cell is a full adder(FA)..

• The AND gate in each cell determines whether a multiplicand bit mj, is added to the incoming partial- product bit, based on the value of the multiplier bit qi (Figure 9.6).

SEQUENTIAL CIRCUIT BINARY MULTIPLIER

- The simplest method to perform multiplication is to use the adder circuitry in the ALU for a number of sequential steps.
 - Registers A and Q combined hold PPi(partial product)

while the multiplier bit qi generates the signal Add/Noadd.

- The carry-out from the adder is stored in flip-flop C (Figure 9.7).
- Procedure for multiplication:
- 1) Multiplier is loaded into register Q, Multiplicand is loaded into register M and
- C & A are cleared to 0.
- 2) If $q_0=1$, add M to A and store sum in A. Then C, A and Q are shifted right one bit-position. If $q_0=0$, no addition performed and C, A & Q are shifted right one bit-position.
- 3) Repeat step 2 for n cycles (where n is the number of bits in operand), the high-order half of the product is held in register A and the low-order half is held in register Q.

SIGNED OPERAND MULTIPLICATION BOOTH ALGORITHM

- This algorithm
- \rightarrow generates a 2n-bit product
- \rightarrow treats both positive & negative 2's-complement n-bit operands uniformly.
- \rightarrow reduces the number of partial products, when there is continuous number of 1's.

• Attractive feature: This algorithm achieves some efficiency in the number of addition required when the multiplier has a few large blocks of 1s.

• Multiplication of 45 and 30 in normal and Booth algorithm method-

The multiplier is recoded using the below table -

Multiplier		Version of multiplicand			
Bit i	Bit <i>i</i> – 1	selected by bit i			
0	0	$0 \times M$			
0	1	$+ 1 \times M$			
1	0	$-1 \times M$			
1	1	$0 \times M$			

Figure 9.12 Booth multiplier recoding table.

While recoding the multiplier, assume '0' to the right of LSB.

MODULE IV

Eg: if multiplier is 0011110, then for recoding, put extra '0' to the right of LSB. Ie it becomes, 00111100, now recode as per the above table. The recoded multiplier is, $0 + 1 \ 0 \ 0 \ 0 - 1 \ 0$

When multiplier is,

+1 – do the usual multiplication, ie. partial product is the multiplicand.

-1 – partial product is the 2's compliment of the multiplicand.

Note: Sign extension to be done, for the partial products.

Wenter	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
worst-case multiplier	+1	-1	+1	-1	+1	-1	+1	_1	+1	-1	+1	-1	+1	-1	+1	-1
Ordinary	1	1	0	0	0	1	0	1	1	0	1	1	1	1	0	0
multiplier	0	-1	0	0	+1	-1	+1	0	ブ -1	+1	0	0	0	-1	0	0
Good	0	0	0	0	1	1	1	1	1	0	0	0	0	1	1	1
manaphor	0	0	0	+1	0	0	0	0	~l	0	0	Û	+1	0	0	-1

FAST MULTIPLICATION

Two techniques to speed up the multiplication process -

- 1. Bit-Pair Recoding Of Multipliers reduces the maximum number of summands (partial products) to n/2 for n-bit multiplier.
- 2. Carry-Save addition of summands reduces the time needed to add the summands.

BIT-PAIR RECODING OF MULTIPLIERS

- This method
- \rightarrow derived from the booth algorithm
- \rightarrow reduces the number of summands by a factor of 2
- Group the Booth-recoded multiplier bits in pairs. Suppose into [i j]
- Then the bit-pair recoded multiplier is obtained by (2*i+j)
- The pair (+1 1) is equivalent to the pair (0 + 1).

Multiplier bit-pair		Multiplier bit on the right	Multiplicand		
<i>i</i> +1	i	i-1	selected at position i		
0	0	0	$0 \times M$		
0	0	1	$+ 1 \times M$		
0	1	0	$+ 1 \times M$		
0	1	1	$+ 2 \times M$		
1	0	0	$-2 \times M$		
1	0	1	$-1 \times M$		
1	1	0	$-1 \times M$		
1	1	1	$0 \times M$		

Direct recoding from multiplier to Bit-pair bits is done by using the below table -

(b) Table of multiplicand selection decisions

Figure 9.14 Multiplier bit-pair recoding.

When multiplier is,

- \circ -2 put '0' as LSB & then 2's complement of multiplicand.
- \circ -1 2's complement of multiplicand.
- \circ +1 only multiplicand (usual).
- \circ +2 put '0' as LSB & then multiplicand.

Note: Sign extension to be done, for the partial products.

CARRY-SAVE ADDITION OF SUMMANDS

• Consider the array for 4*4 multiplication.

• Instead of letting the carries ripple along the rows, they are "saved" and introduced into the next row, at the correct weighted positions. Thus reduces the number of summands and speeds up the addition process.

MODULE IV

(b) Carry-save array Figure 9.16 carry-save arrays for a 4×4 multiplier.

- The full adder is input with three partial bit products in the first row.
- Multiplication requires the addition of several summands.
- Carry- Save Addition (CSA) speeds up the addition process.

- Consider the array for 4x4 multiplication shown in fig 9.16.
- First row consisting of just the AND gates that implement the bit products m3q0, m2q0, m1q0 and m0q0.

• The delay through the carry-save array is somewhat less than delay through the ripple-carry array. This is because the S and C vector outputs from each row are produced in parallel in one full-adder delay.

• Consider the addition of many summands in fig 9.18.

• Group the summands in threes and perform carry-save addition on each of these groups in parallel to generate a set of S and C vectors in one full-adder delay

• Group all of the S and C vectors into threes, and perform carry-save addition on them, generating a further set of S and C vectors in one more full-adder delay

- Continue with this process until there are only two vectors remaining
- The final 2 vectors, are added in a RCA (Ripple Carry Adder) or CLA (Carry Look-ahead Adder) to produce the desired product.
- When the number of summands is large, the time saved is proportionally much greater.
- Delay: AND gate + 2 gate/CSA level + CLA gate delay, Eg., 6 bit number require 15 gate delay, array 6x6 require 6(n-1)-1 = 29 gate Delay.
- In general, CSA takes 1.7 *log*2k-1.7 levels of CSA to reduce k summands.

INTEGER DIVISION

• An n-bit positive-divisor is loaded into register M.

An n-bit positive-dividend is loaded into register Q at the start of the operation.

Register A is set to 0 (Figure 9.21).

• After division operation, the n-bit quotient is in register Q, and the remainder is in register A.

Figure 9.23 Circuit arrangement for binary division.

21	10101
13)274	1101) 100010010
26	1101
14	10000
13	1101
1	1110
	1101
	1
Figure 9.22	Longhand division examples.

RESTORING DIVISION

The above logic circuit arrangement implements non-restoring and restoring division. The non-restoring division algorithm is as follows –

- Step 1: Initialize M Divisor, Q Dividend (n bits), A with 0s
- Step 2: Repeat step 3 to step 5 -n times
- Step 3: Shift A and Q left, by one binary position
- Step 4: Subtract M from A, (A=A-M)
- Step 5: If sign of A is 1, set q₀ to 0 and add M back to A (restore A); Elseif sign of A is 0, set q₀ to 1
- Step 6: Finally n bit Quotient is present in register Q and Remainder is present in register A.

NON - RESTORING DIVISION

The above logic circuit arrangement implements non-restoring and restoring division

- Step 1: Initialize M Divisor, Q Dividend (n bits), A with 0s
- **Step 2**: Repeat step 3 *n* times
- **Step 3**: If sign of A is 0, shift A and Q left by 1 bit and subtract M from A, accordingly set q0 bit; Elseif sign of A is 1, shift A and Q left and add M to A, accordingly set q0 bit
- Step 4: After n cycles, if sign of A is 1, add M to A.
- Step 5: Finally Quotient is present in register Q and Remainder is present in register A.

Figure 9.25 A non-restoring division example.

Module - 4

ARITHMETIC

1. Explain the design of a 4-bit carry-look ahead adder?

2. Design a logic circuit to perform addition/subtraction of two 'n' numbers X and Y?

3. Given A=10101 and B=00100, perform A/B using restoring division algorithm?

4. Perform signed multiplication of numbers (-12) and (-11) using Booth's algorithm?

5. Design 4 bit carry look ahead logic and explain how it is faster them 4 bit ripple adder?

6. Problems on Booth algorithm, Bit-pair recoding, restoring division and non-restoring division.

7. Perform following operations on the 5-bit signed numbers using 2's complement representation system. Also indicate whether overflow has occurred? i) (-10)+(-13) ii)(-10)-(+4) iii)(-3)+(-8) iv) (-10)-(+7)

8.Explain the circuit arrangement for binary division.

9.Explain the 16 bit carry look ahead adder using 4 – bit adder. Also unite the expression for Ci+1.

10. Explain the concept of carry save addition for multiplication operation M xQ = P for 4-bit operands with diagram and suitable example.

11. Explain Generate and Propagate functions in carry look ahead adder.

12. Explain the design of a 4-bit carry look-ahead adder.

13. Design a logic circuit to perform addition/subtraction of two n bit numbers X and Y.

14. Design a 'n' bit carry propagation adder circuit to add 'k' n bit numbers.

Problem 1:

Represent the decimal values 5, -2, 14, -10, 26, -19, 51 and -43 as signed 7-bit numbers in the following binary formats:

- (a) sign-and-magnitude
- (b) 1's-complement
- (c) 2's-complement

Solution:

The three binary representations are given as:

Decimal values	Sign-and-magnitude representation	1's-complement representation	2's-complement representation
5	0000101	0000101	0000101
$^{-2}$	1000010	1111101	1111110
14	0001110	0001110	0001110
-10	1001010	1110101	1110110
26	0011010	0011010	0011010
-19	1010011	1101100	1101101
51	0110011	0110011	0110011
-43	1101011	1010100	1010101

Problem 2:

(a) Convert the following pairs of decimal numbers to 5-bit 2's-complement numbers, then add them. State whether or not overflow occurs in each case.

a) 5 and 10 b) 7 and 13

c) -14 and 11 d) -5 and 7

e) -3 and -8

(b) Repeat Problem 1.7 for the subtract operation, where the second number of each pair is to be subtracted from the first number. State whether or not overflow occurs in each case. **Solution:**

Solutio (a)

${\begin{array}{c}(a) & 00101 \\ + 01010 \end{array}}$	(b) 0011 + 0110	$\begin{array}{ccc} 1 & (c) & 10010 \\ 1 & & + 01011 \end{array}$
01111	1010	0 11101
no overflow	overflo	w no overflow
$\begin{array}{ccc} (d) & 11011 \\ + & 00111 \end{array}$	(e) 1110 + 1100	$\begin{array}{ccc} 1 & (f) & 10110 \\ 0 & + 10011 \end{array}$
00010	1010	1 01001
no overflow	no overflo	w overflow

(b) To subtract the second number, form its 2's-complement and add it to the first number.

(a)	00101 + 10110	(b)	00111 + 10011	(c)	10010 + 10101
n	11011 o overflow	n	11010 o overflow		00111 overflow
(d)	$11011 \\ + 11001$	(e)	$11101 \\ + 01000$	(f)	$\begin{array}{r}10110\\+\ 01101\end{array}$
n	10100 o overflow	n	00101 o overflow	n	00011 o overflow

Problem 3:

Perform following operations on the 6-bit signed numbers using 2's complement representation system. Also indicate whether overflow has occurred.

010110	101011	111111
+001001	<u>+100101</u>	<u>+000111</u>
011001	110111	010101
+010000	<u>+111001</u>	<u>+101011</u>
010 110	111110	100001
<u>-011111</u>	<u>-100101</u>	<u>-011101</u>

Solution:

$010110 \\ + 001001 \\ 011111$	(+22) + (+9) (+31)	$ 101011 \\ + 100101 \\ 010000 $	(-21) + (-27) (-48)	111111 + 000111 000110	(-1) + (+7) (+6)
011111	((10)	000110	()
		overnow			
011001	(+25)	110111	(-9)	010101	(+21)
+010000	+ (+16)	+ 111001	+(-7)	+ 101011	+(-21)
101001	(+41)	110000	(-16)	000000	(0)
overflow					

010110 - 011111	$\frac{(+22)}{-(+31)}$	010110 + 100001 110111
111110 - 100101	(-2) - (-27) (+25)	111110 + 011011 011001
100001 - 011101	$(-31) \\ - (+29) \\ \hline (-60)$	100001 + 100011 000100 overflow
111111 - 000111	(-1) - (+7) (-8)	111111 + 111001 111000
000111 - 111000	$(+7) \\ -(-8) \\ (+15)$	000111 + 001000 001111
011010 - 100010	(+26) - (-30) (+56)	011010 + 011110 111000 overflow

Problem 4:

Perform signed multiplication of following 2's complement numbers using Booth's algorithm. (a)A=010111 and B=110110(b) A=110011 and B=101100(c) A=110101 and B=011011(d) A=001111 and B=001111 (e) A=10100 and B=10101

(f) A=01110 and B=11000

Solution:

Dr. Nagashree N. Associate Professor, CSE, SVIT

Problem 5:

Perform signed multiplication of following 2's complement numbers using bit-pair recoding method.

(a) A=010111 and B=110110 (b) A=110011 and B=101100

(c) A=110101 and B=011011 (d) A=001111 and B=001111

Solution:

$ \begin{array}{c} \times 110110 \\ \times 110110 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	$ \begin{array}{c} \times 110110 \\ \hline \times 110110 \\ \hline \\ & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0$	010111	0 1 0 1 1 1
$\begin{array}{c} 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 &$	$\begin{array}{c} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0$	× 110110	-1 +2 -2
$\begin{array}{c} 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 2 & 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 &$	$\begin{array}{c} \begin{array}{c} 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 2 & 1 & 1 & 0 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \end{array}$ $\begin{array}{c} \begin{array}{c} 110011 \\ \times 101100 \\ \hline \end{array} \\ \begin{array}{c} 110101 \\ \times 011011 \\ \hline \end{array} \\ \begin{array}{c} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 &$		1 1 1 1 1 1 0 1 0 0 1 0
$\begin{array}{c} 1,\overline{1,1,1,0},21,0,0,1\\ \hline 1,1,1,0,0,0,1,1\\ \hline 1,1,1,0,0,0,0,0,0,0,0\\ 110011\\ \times 101100\\ \hline 0,0,0,0,0,0,0,0,0,0,0,0\\ 110101\\ \times 011011\\ \hline 1,1,0,1,0,0\\ \hline 1,1,0,0,0,0,0,0,0,0,0,0\\ \hline 1,1,0,0,0,0,0,0,0,0,0,0,0\\ \hline 1,1,0,0,0,0,0,0,0,0,0,0,0\\ \hline 1,1,0,0,0,0,0,0,0,0,0,0,0\\ \hline 1,1,0,0,0,0,0,0,0,0,0,0,0\\ \hline 1,1,0,0,0,0,0,0,0,0,0,0,0\\ \hline 1,1,0,0,0,0,0,0,0,0,0,0,0\\ \hline 1,1,0,0,0,0,0,0,0,0,0,0,0,0\\ \hline 1,1,0,0,0,0,0,0,0,0,0,0,0,0\\ \hline 1,1,0,0,0,0,0,0,0,0,0,0,0,0\\ \hline 1,1,0,0,0,0,0,0,0,0,0,0,0,0,0\\ \hline 1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0\\ \hline 1,1,0,0,0,0,0,0,0,0,0,0,0,0,0\\ \hline 1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0\\ \hline 1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0\\ \hline 1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\\ \hline 1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\\ \hline 1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\\ \hline 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\\ \hline 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\\ \hline 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\\ \hline 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\\ \hline 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\\ \hline 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\\ \hline 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0$	$\begin{array}{c} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 &$		0 0 0 0 1 0 1 1 1 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1 1 1 1 1 0 0 0 1 1 0 1 0 \\ \hline 1 1 1 1 0 0 0 1 1 0 1 0 \\ \times 101100 \\ \hline \times 101100 \\ \hline \times 011011 \\ \hline \times 001111 \\ \hline \times 001111 \\ \hline \end{array} \begin{array}{c} 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 $		<u>1</u> 1111021101011
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 110011 \\ \times 101100 \\ \hline \\ \times 101100 \\ \hline \\ \times 101101 \\ \hline \\ \times 011011 \\ \hline \\ \times 011011 \\ \hline \\ \\ \times 001111 \\ \hline \\ \\ \times 001111 \\ \hline \\ \\ \end{array} \begin{array}{c} 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ \hline \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0$		1 1 1 1 0 0 0 1 1 0 1 0
$\begin{array}{c} 110011 \\ \times 101100 \\ \hline \\ 1000 \\ \hline \\ 1000 \\ \hline \\ 110101 \\ \times 011011 \\ \hline \\ \\ \end{array}$	$\begin{array}{c} 110011 \\ \times 101100 \\ \hline \\ \times 101100 \\ \hline \\ \times 01001 \\ \hline \\ \times 011011 \\ \hline \\ \times 001111 \\ \hline \\ \hline \\ \times 001111 \\ \hline \\ \hline \\ \times 001111 \\ \hline \\ \hline \\ \\ \end{array} \begin{array}{c} 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ \hline \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 110011 \\ \times 101100 \\ \hline \\ \times 101100 \\ \hline \\ \times 101100 \\ \hline \\ \times 011011 \\ \hline \\ \times 001111 \\ \hline \\ \times 001111 \\ \hline \\ \\ \hline \\ \\ \end{array} \begin{array}{c} 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ \hline \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0$		
$ \begin{array}{c} \times 101100 \\ & & -1 & -1 & 0 \\ & & & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ \hline 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0$	$ \begin{array}{c} \times 101100 \\ & & -1 & -1 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$	110011	1 1 0 0 1 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ \hline 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 &$	× 101100	-1 -1 0
$\begin{array}{c} 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ \hline 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 &$	$\begin{array}{c} \begin{array}{c} 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ \hline 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 &$		0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0 \hline 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ \hline 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0$		0 0 0 0 0 0 1 1 0 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \begin{array}{c} 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0$		0 0 0 01111011
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 110101 \\ \times 011011 \\ \hline \\ \times 011011 \\ \hline \\ \times 001111 \\ \hline \\ \times 001111 \\ \hline \\ \\ \end{array} \begin{array}{c} 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ \hline \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1$		0 0 0 1 0 0 0 0 1 0 0
$\begin{array}{c} 110101 \\ \times 011011 \\ \end{array} \begin{array}{c} 1 & 1 & 0 & 1 & 0 & 1 \\ +2 & -1 & -1 \\ \end{array}$	$ \begin{array}{c} 110101 \\ \times 011011 \\ \hline \\ \times 011011 \\ \hline \\ \times 001111 \\ \hline \\ \times 001111 \\ \hline \\ \\ \times 001111 \\ \hline \\ \end{array} \begin{array}{c} 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ \hline \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 110101 \\ \times 011011 \\ \hline \times 011011 \\ \hline \times 011011 \\ \hline \times 001011 \\ \hline \times 001111 \\ \hline \end{array} $ $ \begin{array}{c} 1 & 1 & 0 & 1 & 0 & 1 \\ & +2 & -1 & -1 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1$		
× 011011 +2 -1 -1	$ \begin{array}{c} \times 011011 \\ & +2 & -1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1$	110101	1 1 0 1 0 1
	$\begin{array}{c} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1$	× 011011	+2 -1 -1
	$\begin{array}{c} 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\ \hline 1 & 1 & 1 & 0 & 1 & 0_1 1 & 1 \\ \hline 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1$		000 <u>00</u> 0001011
0 0 0 0 0 1 0 1 1	$ \begin{array}{c} \underline{1} 1 1 1 0 1 0_{1} 1_{1} \\ \underline{1} 1 1 0 1 0_{1} 1_{1} \\ \underline{1} 1 1 0 1 1 0 1 0 1 1 1_{1} \\ \underline{001111} \\ \underline{\times 001111} \\ \underline{1} 1 1 1 1 1_{1} 1_{1} 1_{1} \\ \underline{0} 0 0 0 0_{1} \\ \underline{0} 0 0 0 \\ \underline{0} 0 0 \\ \underline{0} \\$		0 0 0 0 0 0 1 0 1 1
111010_{11}	$\begin{array}{c} \begin{array}{c} 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1$		111010_11_1
1 1 1 0 1 1 0 1 0 1 1 1	$ \underbrace{\begin{array}{c} 001111\\ \times 001111\\ 0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \$		1 1 1 0 1 1 0 1 0 1 1 1
	$ \underbrace{\begin{array}{c} 001111\\ \times 001111\\ \hline \\ 0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \\ 1 \ 1 \ 1 \ 1 \ 1 \ 1$		
0 0 1 1 1 1	$ \begin{array}{c} 001111 \\ \times 001111 \\ 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \end{array} $		0 0 1 1 1 1
+1 -1	<u>× 001111</u> 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 1 1 1	001111	+1 -1
1 1 1 1 1 1 1 1 0 0 0 1	0 0 0 0 1 1 1 1	× 001111	1 1 1 1 1 1 1 1 0 0 0 1
0 0 0 0 1 1 1 1			0 0 0 0 1 1 1 1
	0 0 0 0 1 1 1 0 0 0 1		

Problem 6:

Given A=10101 and B=00100, perform A/B using restoring division algorithm.

Solution:

-		
Initially	000000(A)	10101(Q)
-1.10	000100(M)	- -
Shift	000001	
Subtract	111100	
Cot a0	()11101	
Set yu Bostoro	100	
Restore	100	
	000001	01010
Shift	000010	
Subtract	111100	
Set q0	(1)11110	
Restore	- 100	
		<u>*</u>
	000010	10100
Shift	000101	0100
Subtract	111100	
C-1-0		
Set qu Ne restare		
NU FESLUFE		
	000001	10100
	000001	10100
Shift	000001	01001
Subtract	111100	
	~	
Set q0	(1)11110	
Restore	100	
-1.10	000010	10010
Shift	000101	0010
Subtract	111100	
Cot all		
Set yu No rostore	0,00001	
NUTESCOLE		
	000001	00101
		00101
	remainder	quotient

Problem 7:

Given A=10101 and B=00101, perform A/B using non-restoring division algorithm.

|--|

	000000 A 000101 M	10101 Q	Initial configuration
shift subt	$ract = \frac{000001}{111011}$	0 1 0 1 🗌 0 1 0 1 🔘	1st cycle
shift add	$\frac{111000}{000101}\\111101$	1 0 1 0 1 1 0 1 0 0	2nd cycle
shift add	111011 000101 000000	0 1 0 0 1 0 1 0 0 1	3rd cycle
shift subti	$\begin{array}{r} 000000\\ \text{ract} & \frac{111011}{111011} \end{array}$	1 0 0 1 . 1 0 0 1 0	4th cycle
shift add	$\frac{110111}{000101}$ 111100	0 0 1 0 _ 0 0 1 0 0	5th cycle
add	000101 000001	quotient	
Solution:	remainder		