
DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 4

MODULE 1

INTRODUCTION TO DATABASE

1.1 Introduction

Importance: Database systems have become an essential component of life in modern society, in
that many frequently occurring events trigger the accessing of at least one database: bibliographic

library searches, bank transactions, hotel/airline reservations, grocery store purchases, online
(Web) purchases, etc., etc.

Traditional vs. more recent applications of databases:

The applications mentioned above are all "traditional" ones for which the use of rigidly-structured

textual and numeric data suffices. Recent advances have led to the application of database
technology to a wider class of data. Examples include multimedia databases (involving pictures,

video clips, and sound messages) and geographic databases (involving maps, satellite images).

Also, database search techniques are applied by some WWW search engines.

Definitions

The term database is often used, rather loosely, to refer to just about any collection of related data.
E&N say that, in addition to being a collection of related data, a database must have the following
properties:

 It represents some aspect of the real (or an imagined) world, called the miniworld or universe of
discourse. Changes to the miniworld are reflected in the database. Imagine, for example, a

UNIVERSITY miniworld concerned with students, courses, course sections, grades, and course
prerequisites.

 It is a logically coherent collection of data, to which some meaning can be attached. (Logical
coherency requires, in part, that the database not be self-contradictory.)

 It has a purpose: there is an intended group of users and some preconceived applications that the
users are interested in employing.

To summarize: a database has some source (i.e., the miniworld) from which data are derived, some
degree of interaction with events in the represented miniworld (at least insofar as the data is

updated when the state of the miniworld changes), and an audience that is interested in using it.

An Aside: data vs. information vs. knowledge: Data is the representation of "facts" or

"observations" whereas information refers to the meaning thereof (according to some

interpretation). Knowledge, on the other hand, refers to the ability to use information to achieve
intended ends.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 5

Computerized vs. manual: Not surprisingly (this being a CS course), our concern will be with

computerized database systems, as opposed to manual ones, such as the card catalog-based systems
that were used in libraries in ancient times (i.e., before the year 2000). (Some authors wouldn't
even recognize a non-computerized collection of data as a database, but E&N do.)

Size/Complexity: Databases run the range from being small/simple (e.g., one person's recipe

database) to being huge/complex (e.g., Amazon's database that keeps track of all its products,
customers, and suppliers).

Definition: A database management system (DBMS) is a collection of programs enabling users
to create and maintain a database.

More specifically, a DBMS is a general purpose software system facilitating each of the following
(with respect to a database):

 definition: specifying data types (and other constraints to which the data must conform) and
data organization

 construction: the process of storing the data on some medium (e.g., magnetic disk) that is

controlled by the DBMS
 manipulation: querying, updating, report generation

 sharing: allowing multiple users and programs to access the database "simultaneously"
 system protection: preventing database from becoming corrupted when hardware or software

failures occur
 security protection: preventing unauthorized or malicious access to database.

Given all its responsibilities, it is not surprising that a typical DBMS is a complex piece of
software.

A database together with the DBMS software is referred to as a database system. (See Figure 1.1,
page 7.)

1.2 : An Example:

UNIVERSITY database in Figure 1.2. Notice that it is relational!

Among the main ideas illustrated in this example is that each file/relation/table has a set of named
fields/attributes/columns, each of which is specified to be of some data type. (In addition to a data
type, we might put further restrictions upon a field, e.g., GRADE_REPORT must have a value
from the set {'A', 'B', ..., 'F'}.)

The idea is that, of course, each table will be populated with data in the form of
records/tuples/rows, each of which represents some entity (in the miniworld) or some relationship
between entities.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 6

For example, each record in the STUDENT table represents a —surprise!— student. Similarly for
the COURSE and SECTION tables.

On the other hand, each record in GRADE_REPORT represents a relationship between a student
and a section of a course. And each record in PREREQUISITE represents a relationship between
two courses.

Database manipulation involves querying and updating.

Examples of (informal) queries:

 Retrieve the transcript(s) of student(s) named 'Smith'.
 List the names of students who were enrolled in a section of the 'Database' course in Spring

2006, as well as their grades in that course section.
 List all prerequisites of the 'Database' course.

Examples of (informal) updates:

 Change the CLASS value of 'Smith' to sophomore (i.e., 2).

 Insert a record for a section of 'File Processing' for this semester.
 Remove from the prerequisites of course 'CMPS 340' the course 'CMPS 144'.

Of course, a query/update must be conveyed to the DBMS in a precise way (via the query language
of the DBMS) in order to be processed.

As with software in general, developing a new database (or a new application for an existing

database) proceeds in phases, including requirements analysis and various levels of design
(conceptual (e.g., Entity-Relationship Modeling), logical (e.g., relational), and physical (file

structures)).

1.3 : Characteristics of the Database Approach:

Database approach vs. File Processing approach: Consider an organization/enterprise that is

organized as a collection of departments/offices. Each department has certain data processing

"needs", many of which are unique to it. In the file processing approach, each department would

control a collection of relevant data files and software applications to manipulate that data.

For example, a university's Registrar's Office would maintain data (and programs) relevant to

student grades and course enrollments. The Bursar's Office would maintain data (and programs)

pertaining to fees owed by students for tuition, room and board, etc. (Most likely, the people in

these offices would not be in direct possession of their data and programs, but rather the

university's Information Technology Department would be responsible for providing services such

as data storage, report generation, and programming.)

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 7

One result of this approach is, typically, data redundancy, which not only wastes storage space

but also makes it more difficult to keep changing data items consistent with one another, as a

change to one copy of a data item must be made to all of them (called duplication-of-effort).

Inconsistency results when one (or more) copies of a datum are changed but not others. (E.g., If

you change your address, informing the Registrar's Office should suffice to ensure that your grades

are sent to the right place, but does not guarantee that your next bill will be, as the copy of your

address "owned" by the Bursar's Office might not have been changed.)

In the database approach, a single repository of data is maintained that is used by all the
departments in the organization. (Note that "single repository" is used in the logical sense. In
physical terms, the data may be distributed among various sites, and possibly mirrored.)

Main Characteristics of database approach:

1. Self-Description: A database system includes —in addition to the data stored that is of relevance

to the organization— a complete definition/description of the database's structure and constraints.
This meta-data (i.e., data about data) is stored in the so-called system catalog, which contains a
description of the structure of each file, the type and storage format of each field, and the various
constraints on the data (i.e., conditions that the data must satisfy).

See Figures 1.1 and 1.3.

The system catalog is used not only by users (e.g., who need to know the names of tables

and attributes, and sometimes data type information and other things), but also by the

DBMS software, which certainly needs to "know" how the data is structured/organized in

order to interpret it in a manner consistent with that structure. Recall that a DBMS is

general purpose, as opposed to being a specific database application. Hence, the structure

of the data cannot be "hard-coded" in its programs (such as is the case in typical file

processing approaches), but rather must be treated as a "parameter" in some sense.

2. Insulation between Programs and Data; Data Abstraction:

Program-Data Independence: In traditional file processing, the structure of the data

files accessed by an application is "hard-coded" in its source code. (E.g., Consider a file
descriptor in a COBOL program: it gives a detailed description of the layout of the

records in a file by describing, for each field, how many bytes it occupies.)

If, for some reason, we decide to change the structure of the data (e.g., by adding the first
two digits to the YEAR field, in order to make the program Y2K compliant!), every
application in which a description of that file's structure is hard-coded must be changed!

In contrast, DBMS access programs, in most cases, do not require such changes, because the

structure of the data is described (in the system catalog) separately from the programs that access

it and those programs consult the catalog in order to ascertain the structure of the data (i.e.,

providing a means by which to determine boundaries between records between fields within

records) so that they interpret that data properly See Figure 1.4.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 8

In other words, the DBMS provides a conceptual or logical view of the data to application
programs, so that the underlying implementation may be changed without the programs being
modified. (This is referred to as program-data independence.)
Also, which access paths (e.g., indexes) exist are listed in the catalog, helping the DBMS to
determine the most efficient way to search for items in response to a q uery.

Data Abstraction:

 A data model is used to hide storage details and present the users with a conceptual

view of the database.

 Programs refer to the data model constructs rather than data storage details

Note: In fairness to COBOL, it should be pointed out that it has a COPY feature that allows
different application programs to make use of the same file descriptor stored in a "library".

This provides some degree of program-data independence, but not nearly as much as a
good DBMS does. End of note.

Example by which to illustrate this concept: Suppose that you are given the task of
developing a program that displays the contents of a particular data file. Specifically, each
record should be displayed as follows:

Record #i:

value of first field
value of second field

...

...
value of last field

To keep things very simple, suppose that the file in question has fixed-length records of 57 bytes

with six fixed-length fields of lengths 12, 4, 17, 2, 15, and 7 bytes, respectively, all of which are

ASCII strings. Developing such a program would not be difficult. However, the obvious solution

would be tailored specifically for a file having the particular structure described here and would be

of no use for a file with a different structure.

Now suppose that the problem is generalized to say that the program you are to develop

must be able to display any file having fixed-length records with fixed-length fields that
are ASCII strings. Impossible, you say? Well, yes, unless the program has the ability to

access a description of the file's structure (i.e., lengths of its records and the fields

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 9

therein), in which case the problem is not hard at all. This illustrates the power of metadata, i.e.,
data describing other data.

3. Multiple Views of Data: Different users (e.g., in different departments of an organization) have

different "views" or perspectives on the database. For example, from the point of view of a Bursar's
Office employee, student data does not include anything about which courses were taken or which
grades were earned. (This is an example of a subset view.)

As another example, a Registrar's Office employee might think that GPA is a field of data
in each student's record. In reality, the underlying database might calculate that value each
time it is needed. This is called virtual (or derived) data.

A view designed for an academic advisor might give the appearance that the data is
structured to point out the prerequisites of each course.

(See Figure 1.5, page 14.)

A good DBMS has facilities for defining multiple views. This is not only convenient for
users, but also addresses security issues of data access. (E.g., The Registrar's Office view
should not provide any means to access financial data.)

4. Data Sharing and Multi-user Transaction Processing: As you learned about (or will) in the OS
course, the simultaneous access of computer resources by multiple users/processes is a major
source of complexity. The same is true for multi-user DBMS's.

Arising from this is the need for concurrency control, which is supposed to ensure that

several users trying to update the same data do so in a "controlled" manner so that the
results of the updates are as though they were done in some sequential order (rather than

interleaved, which could result in data being incorrect).

This gives rise to the concept of a transaction, which is a process that makes one or more

accesses to a database and which must have the appearance of executing in isolation from
all other transactions (even ones that access the same data at the "same time") and of being

atomic (in the sense that, if the system crashes in the middle of its execution, the database
contents must be as though it did not execute at all).

Applications such as airline reservation systems are known as online transaction
processing applications.

1.4 : Actors on the Scene

These apply to "large" databases, not "personal" databases that are defined, constructed, and
used by a single person via, say, Microsoft Access.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 10

 Users may be divided into

 Those who actually use and control the database content, and those who design, develop and
maintain database applications (called ―Actors on the Scene‖), and

 Those who design and develop the DBMS software and related tools, and the computer
systems operators (called ―Workers Behind the Scene‖).

1. Database Administrator (DBA): This is the chief administrator, who oversees and

manages the database system (including the data and software). Duties include authorizing

users to access the database, coordinating/monitoring its use, acquiring hardware/software
for upgrades, etc. In large organizations, the DBA might have a support staff.

2. Database Designers: They are responsible for identifying the data to be stored and for

choosing an appropriate way to organize it. They also define views for different categories
of users. The final design must be able to support the requirements of all the user sub-

groups.
3. End Users: These are persons who access the database for querying, updating, and

report generation. They are main reason for database's existence!
o Casual end users: use database occasionally, needing different information each

time; use query language to specify their requests; typically middle- or high-level
managers.

o Naive/Parametric end users: Typically the biggest group of users; frequently
query/update the database using standard canned transactions that have been
carefully programmed and tested in advance. Examples:

 bank tellers check account balances, post withdrawals/deposits

 reservation clerks for airlines, hotels, etc., check availability of
seats/rooms and make reservations.

 shipping clerks (e.g., at UPS) who use buttons, bar code scanners, etc., to
update status of in-transit packages.

o Sophisticated end users: engineers, scientists, business analysts who implement
their own applications to meet their complex needs.

o Stand-alone users: Use "personal" databases, possibly employing a special-
purpose (e.g., financial) software package. Mostly maintain personal databases
using ready-to-use packaged applications.

o An example is a tax program user that creates its own internal database.
o Another example is maintaining an address book

4. System Analysts, Application Programmers, Software Engineers:
o System Analysts: determine needs of end users, especially naive and parametric

users, and develop specifications for canned transactions that meet these needs.
o Application Programmers: Implement, test, document, and maintain programs

that satisfy the specifications mentioned above.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 11

1.5: Workers Behind the Scene

 DBMS system designers/implementors: provide the DBMS software that is at the
foundation of all this!

 tool developers: design and implement software tools facilitating database system

design, performance monitoring, creation of graphical user interfaces, prototyping, ets.
 operators and maintenance personnel: responsible for the day-to-day operation of the

system.

1.6: Capabilities/Advantages of DBMS's

1. Controlling Redundancy: Data redundancy (such as tends to occur in the "file processing"
approach) leads to wasted storage space, duplication of effort (when multiple copies of

a datum need to be updated), and a higher liklihood of the introduction of inconsistency.

On the other hand, redundancy can be used to improve performance of queries. Indexes,
for example, are entirely redundant, but help the DBMS in processing queries more
quickly.

Another example of using redundancy to improve performance is to store an "extra" field
in order to avoid the need to access other tables (as when doing a JOIN, for example). See
Figure 1.6 (page 18): the StudentName and CourseNumber fields need not be there.

A DBMS should provide the capability to automatically enforce the rule that no
inconsistencies are introduced when data is updated. (Figure 1.6 again, in which
Student_name does not match Student_number.)

2. Restricting Unauthorized Access: A DBMS should provide a security and

authorization subsystem, which is used for specifying restrictions on user accounts.

Common kinds of restrictions are to allow read-only access (no updating), or access only
to a subset of the data (e.g., recall the Bursar's and Registrar's office examples from above).

3. Providing Persistent Storage for Program Objects: Object-oriented database systems

make it easier for complex runtime objects (e.g., lists, trees) to be saved in secondary
storage so as to survive beyond program termination and to be retrievable at a later time.

4. Providing Storage Structures for Efficient Query Processing: The DBMS maintains
indexes (typically in the form of trees and/or hash tables) that are utilized to improve the

execution time of queries and updates. (The choice of which indexes to create and maintain
is part of physical database design and tuning (see Chapter 16) and is the responsibility of

the DBA.

The query processing and optimization module is responsible for choosing an efficient
query execution plan for each query submitted to the system. (See Chapter 15.)

5. Providing Backup and Recovery: The subsystem having this responsibility ensures that

recovery is possible in the case of a system crash during execution of one or more
transactions.

Providing Multiple User Interfaces: For example, query languages for casual users,
programming language interfaces for application programmers, forms and/or command
codes for parametric users, menu-driven interfaces for stand-alone users.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 12

6. Representing Complex Relationships Among Data: A DBMS should have the
capability to represent such relationships and to retrieve related data quickly.

7. Enforcing Integrity Constraints: Most database applications are such that the semantics

(i.e., meaning) of the data require that it satisfy certain restrictions in order to make sense.

Perhaps the most fundamental constraint on a data item is its data type, which specifies the

universe of values from which its value may be drawn. (E.g., a Grade field could be defined

to be of type Grade_Type, which, say, we have defined as including precisely the values in

the set { "A", "A-", "B+", ..., "F" }.

Another kind of constraint is referential integrity, which says that if the database includes

an entity that refers to another one, the latter entity must exist in the database. For example,
if (R56547, CIL102) is a tuple in the Enrolled_In relation, indicating that a student with ID

R56547 is taking a course with ID CIL102, there must be a tuple in the Student relation
corresponding to a student with that ID.

8. Permitting Inferencing and Actions Via Rules: In a deductive database system, one may

specify declarative rules that allow the database to infer new data! E.g., Figure out which

students are on academic probation. Such capabilities would take the place of application
programs that would be used to ascertain such information otherwise.

Active database systems go one step further by allowing "active rules" that can be used to

initiate actions automatically.

1.7 : A Brief History of Database Applications

 Early Database Applications:

 The Hierarchical and Network Models were introduced in mid 1960s and dominated during
the seventies.

 A bulk of the worldwide database processing still occurs using these models.

 Relational Model based Systems:

 Relational model was originally introduced in 1970, was heavily researched and
experimented with in IBM Research and several universities.

 Object-oriented and emerging applications:

Object-Oriented Database Management Systems (OODBMSs) were introduced in late 1980s and
early 1990s to cater to the need of complex data processing in CAD and other applications.

 Their use has not taken off much.

Many relational DBMSs have incorporated object database concepts, leading to a new category
called object-relational DBMSs (ORDBMSs)

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 13

Extended relational systems add further capabilities (e.g. for multimedia data, XML, and other
data types)

 Relational DBMS Products emerged in the 1980s

 Data on the Web and E-commerce Applications:

 Web contains data in HTML (Hypertext markup language) with links among pages.

 This has given rise to a new set of applications and E-commerce is using new standards
like XML (eXtended Markup Language).

 Script programming languages such as PHP and JavaScript allow generation of dynamic
Web pages that are partially generated from a database

 New functionality is being added to DBMSs in the following areas:

 Scientific Applications

 XML (eXtensible Markup Language)

 Image Storage and Management

 Audio and Video data management

 Data Warehousing and Data Mining

 Spatial data management

 Time Series and Historical Data Management

 The above gives rise to new research and development in incorporating new
data types, complex data structures, new operations and storage and
indexing schemes in database systems.

 Also allow database updates through Web pages

1.8: When Not to Use a DBMS

Main inhibitors (costs) of using a DBMS:
 High initial investment and possible need for additional hardware.

 Overhead for providing generality, security, concurrency control, recovery, and

integrity functions.

 When a DBMS may be unnecessary:

 If the database and applications are simple, well defined, and not expected to

change.

 If there are stringent real-time requirements that may not be met because of

DBMS overhead.

 If access to data by multiple users is not required.

 When no DBMS may suffice:

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 14

 If the database system is not able to handle the complexity of data because of

modeling limitations

 If the database users need special operations not supported by the DBMS.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 15

ENTITY-RELATIONSHIP MODEL

2.1 Data Models, Schemas, and Instances

One fundamental characteristic of the database approach is that it provides some level of data
abstraction by hiding details of data storage that are irrelevant to database users.

A data model ---a collection of concepts that can be used to describe the conceptual/logical
structure of a database--- provides the necessary means to achieve this abstraction.

By structure is meant the data types, relationships, and constraints that should hold for the data.

Most data models also include a set of basic operations for specifying retrievals/updates.

Object-oriented data models include the idea of objects having behavior (i.e., applicable methods)
being stored in the database (as opposed to purely "passive" data).

According to C.J. Date (one of the leading database experts), a data model is an abstract, self-
contained, logical definition of the objects, operators, and so forth, that together constitute the

abstract machine with which users interact. The objects allow us to model the structure of data;
the operators allow us to model its behavior.

In the relational data model, data is viewed as being organized in two-dimensional tables
comprised of tuples of attribute values. This model has operations such as Project, Select, and Join.

A data model is not to be confused with its implementation, which is a physical realization on a
real machine of the components of the abstract machine that together constitute that model.

Logical vs. physical!!

There are other well-known data models that have been the basis for database systems. The best-
known models pre-dating the relational model are the hierarchical (in which the entity types form

a tree) and the network (in which the entity types and relationships between them form a graph).

Categories of Data Models (based on degree of abstractness):

 high-level/conceptual: (e.g., ER model of Chapter 3) provides a view close to the way

users would perceive data; uses concepts such as
o entity: real-world object or concept (e.g., student, employee, course, department,

event)
o attribute: some property of interest describing an entity (e.g., height, age, color)
o relationship: an interaction among entities e.g., works-on relationship between an

employee and a project

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 16

 representational/implementational: intermediate level of abstractness; example is

relational data model (or the network model alluded to earlier). Also called record-based
model.

 low-level/physical: gives details as to how data is stored in computer system, such as

record formats, orderings of records, access paths (indexes). (See Chapters 13-14.)

2.1.2: Schemas, Instances, and Database State

One must distinguish between the description of a database and the database itself. The former is
called the database schema, which is specified during design and is not expected to change often.
(See Figure 2.1, p. 33, for schema diagram for relational UNIVERSITY database.)

The actual data stored in the database probably changes often. The data in the database at a
particular time is called the state of the database, or a snapshot.

Application requirements change occasionally, which is one of the reasons why software
maintenance is important. On such occasions, a change to a database's schema may be called for.

An example would be to add a Date_of_Birth field/attribute to the STUDENT table. Making changes
to a database schema is known as schema evolution. Most modern DBMS's support schema

evolution operations that can be applied while a database is operational.

2.2 DBMS Architecture and Data Independence

2.2.1: Three-Schema Architecture: (See Figure 2.2, page 34.) This idea was first described by

the ANSI/SPARC committee in late 1970's. The goal is to separate (i.e., insert layers of

"insulation" between) user applications and the physical database. C.J. Date points out that it is an

ideal that few, if any, real-life DBMS's achieve fully.

 internal level: has an internal/physical schema that describes the physical storage

structure of the database using a low-level data model)

 conceptual level: has a conceptual schema describing the (logical) structure of the whole

database for a community of users. It hides physical storage details, concentrating upon

describing entities, data types, relationships, user operations, and constraints. Can be
described using either high-level or implementational data model.

 external/view level: includes a number of external schemas (or user views), each of which
describes part of the database that a particular category of users is interested in, hiding rest

of database. Can be described using either high-level or implementational data model. (In
practice, usually described using same model as is the conceptual schema)

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 17

Users (including application programs) submit queries that are expressed with respect to the
external level. It is the responsibility of the DBMS to transform such a query into one that is
expressed with respect to the internal level (and to transform the result, which is at the internal
level, into its equivalent at the external level).

Example: Select students with GPA > 3.5.

A: By virtue of mappings between the levels:

 external/conceptual mapping (providing logical data independence)

 conceptual/internal mapping (providing physical data independence)

Data independence is the capacity to change the schema at one level of the architecture without

having to change the schema at the next higher level. We distinguish between logical and physical

data independence according to which two adjacent levels are involved. The former refers to the

ability to change the conceptual schema without changing the external schema. The latter refers to

the ability to change the internal schema without having to change the conceptual.

For an example of physical data independence, suppose that the internal schema is modified

(because we decide to add a new index, or change the encoding scheme used in representing some
field's value, or stipulate that some previously unordered file must be ordered by a particular field

). Then we can change the mapping between the conceptual and internal schemas in order to avoid
changing the conceptual schema itself.

Not surprisingly, the process of transforming data via mappings can be costly (performance-wise),

which is probably one reason that real-life DBMS's don't fully implement this 3-schema
architecture.

2.3 Database Languages and Interfaces

A DBMS supports a variety of users and must provide appropriate languages and interfaces for
each category of users.

DBMS Languages

 DDL (Data Definition Language): used (by the DBA and/or database designers) to
specify the conceptual schema.

 SDL (Storage Definition Language): used for specifying the internal schema
 VDL (View Definition Language): used for specifying the external schemas (i.e., user

views)

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 18

 DML (Data Manipulation Language): used for performing operations such as retrieval
and update upon the populated database

The above description represents some kind of ideal. In real-life, at least so far, the de facto

standard DBMS language is SQL (Standard Query Language), which has constructs to support the
functions needed by DDL, VDL, and DML languages. (Early versions of SQL had features in

support of SDL functions, but no more.)

2.3.1 DBMS Languages

menu-based, forms-based, gui-based, natural language, special purpose for parametric users, for
DBA.

2.3.2 DBMS Interfaces

 Menu-based interfaces for web clients or browsing

 Forms-based interfaces

 GUI's

 Natural Language Interfaces
 Speech Input and Output

 Interfaces for parametric users
 Interfaces for the DBA

2.4 Database System Environment

See Figure 2.3, page 41.

2.5 Centralized and Client/Server Architectures for DBMS's

2.6 Classification of DBMS's

Based upon

 underlying data model (e.g., relational, object, object-relational, network)

 multi-user vs. single-user

 centralized vs. distributed

 cost

 general-purpose vs. special-purpose

 types of access path options

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 19

2.7 Data Modeling Using the Entity-Relationship Model

Outline of Database Design

The main phases of database design are depicted in Figure 3.1, page 59:

 Requirements Collection and Analysis: purpose is to produce a description of the users'
requirements.

 Conceptual Design: purpose is to produce a conceptual schema for the database, including
detailed descriptions of entity types, relationship types, and constraints. All these are

expressed in terms provided by the data model being used. (Remark: As the ER model is
focused on precisely these three concepts, it would seem that the authors are predisposed

to using that data model!)
 Implementation: purpose is to transform the conceptual schema (which is at a

high/abstract level) into a (lower-level) representational/implementational model
supported by whatever DBMS is to be used.

 Physical Design: purpose is to decide upon the internal storage structures, access paths

(indexes), etc., that will be used in realizing the representational model produced in
previous phase.

2.8 : Entity-Relationship (ER) Model

Our focus now is on the second phase, conceptual design, for which The Entity-Relationship
(ER) Model is a popular high-level conceptual data model.

In the ER model, the main concepts are entity, attribute, and relationship.

2.8.1 Entities and Attributes

Entity: An entity represents some "thing" (in the miniworld) that is of interest to us, i.e., about
which we want to maintain some data. An entity could represent a physical object (e.g., house,
person, automobile, widget) or a less tangible concept (e.g., company, job, academic course).

Attribute: An entity is described by its attributes, which are properties characterizing it. Each

attribute has a value drawn from some domain (set of meaningful values).

Example: A PERSON entity might be described by Name, BirthDate, Sex, etc., attributes, each
having a particular value.

What distinguishes an entity from an attribute is that the latter is strictly for the purpose of
describing the former and is not, in and of itself, of interest to us. It is sometimes said that an

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 20

entity has an independent existence, whereas an attribute does not. In performing data modeling,
however, it is not always clear whether a particular concept deserves to be classified as an entity
or "only" as an attribute.

We can classify attributes along these dimensions:

 simple/atomic vs. composite

 single-valued vs. multi-valued (or set-valued)
 stored vs. derived (Note from instructor: this seems like an implementational detail that

ought not be considered at this (high) level of abstraction.)

A composite attribute is one that is composed of smaller parts. An atomic attribute is indivisible
or indecomposable.

 Example 1: A BirthDate attribute can be viewed as being composed of (sub-)attributes

for month, day, and year.
 Example 2: An Address attribute (Figure 3.4, page 64) can be viewed as being composed

of (sub-)attributes for street address, city, state, and zip code. A street address can itself be

viewed as being composed of a number, street name, and apartment number. As this

suggests, composition can extend to a depth of two (as here) or more.

To describe the structure of a composite attribute, one can draw a tree (as in the aforementioned
Figure 3.4). In case we are limited to using text, it is customary to write its name followed by a
parenthesized list of its sub-attributes. For the examples mentioned above, we would write

BirthDate(Month, Day, Address(StreetAddr(StrNum, StrName,
AptNum), City, State, Zip)

Year)

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 21

Single- vs. multi-valued attribute: Consider a PERSON entity. The person it represents has (one)

SSN, (one) date of birth, (one, although composite) name, etc. But that person may have zero or

more academic degrees, dependents, or (if the person is a male living in Utah) spouses! How can

we model this via attributes AcademicDegrees, Dependents, and Spouses? One way is to allow

such attributes to be multi-valued (perhaps set-valued is a better term), which is to say that we

assign to them a (possibly empty) set of values rather than a single value.

To distinguish a multi-valued attribute from a single-valued one, it is customary to enclose the
former within curly braces (which makes sense, as such an attribute has a value that is a set, and

curly braces are traditionally used to denote sets). Using the PERSON example from above, we

would depict its structure in text as

PERSON(SSN, Name, BirthDate(Month, Day, Year), { AcademicDegrees(School, Level, Year) },
{ Dependents }, ...)

Here we have taken the liberty to assume that each academic degree is described by a school, level
(e.g., B.S., Ph.D.), and year. Thus, AcademicDegrees is not only multi-valued but also composite.
We refer to an attribute that involves some combination of multi-valuedness and compositeness
as a complex attribute.

A more complicated example of a complex attribute is AddressPhone in Figure 3.5 (page 65). This

attribute is for recording data regarding addresses and phone numbers of a business. The structure
of this attribute allows for the business to have several offices, each described by an address and a

set of phone numbers that ring into that office. Its structure is given by

{ AddressPhone({ Phone(AreaCode, Number) }, Address(StrAddr(StrNum, StrName, AptNum),
City, State, Zip)) }

Stored vs. derived attribute: Perhaps independent and derivable would be better terms for these

(or non-redundant and redundant). In any case, a derived attribute is one whose value can be
calculated from the values of other attributes, and hence need not be stored. Example: Age can be
calculated from BirthDate, assuming that the current date is accessible.

The Null value: In some cases a particular entity might not have an applicable value for a

particular attribute. Or that value may be unknown. Or, in the case of a multi-valued attribute, the

appropriate value might be the empty set.

Example: The attribute DateOfDeath is not applicable to a living person and its correct value may
be unknown for some persons who have died.

In such cases, we use a special attribute value (non-value?), called null. There has been some
argument in the database literature about whether a different approach (such as having distinct
values for not applicable and unknown) would be superior.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 22

2.8.2 : Entity Types, Entity Sets, Keys, and Domains

Above we mentioned the concept of a PERSON entity, i.e., a representation of a particular person

via the use of attributes such as Name, Sex, etc. Chances are good that, in a database in which one

such entity exists, we will want many others of the same kind to exist also, each of them described

by the same collection of attributes. Of course, the values of those attributes will differ from one

entity to another (e.g., one person will have the name "Mary" and another will have the name

"Rumpelstiltskin"). Just as likely is that we will want our database to store information about other

kinds of entities, such as business transactions or academic courses, which will be described by

entirely different collections of attributes.

This illustrates the distinction between entity types and entity instances. An entity type serves as
a template for a collection of entity instances, all of which are described by the same collection
of attributes. That is, an entity type is analogous to a class in object-oriented programming and an
entity instance is analogous to a particular object (i.e., instance of a class).

In ER modeling, we deal only with entity types, not with instances. In an ER diagram, each entity
type is denoted by a rectangular box.

An entity set is the collection of all entities of a particular type that exist, in a database, at some
moment in time.

Key Attributes of an Entity Type: A minimal collection of attributes (often only one) that, by

design, distinguishes any two (simultaneously-existing) entities of that type. In other words, if
attributes A1 through Am together form a key of entity type E, and e and f are two entities of type
E existing at the same time, then, in at least one of the attributes Ai (0 < i <= m), e and f must have
distinct values.

An entity type could have more than one key. (An example of this appears in Figure 3.7, page 67,
in which the CAR entity type is postulated to have both { Registration(RegistrationNum, State) }
and { VehicleID } as keys.)

Domains (Value Sets) of Attributes: The domain of an attribute is the "universe of values" from

which its value can be drawn. In other words, an attribute's domain specifies its set of allowable
values. The concept is similar to data type.

Example Database Application: COMPANY

Suppose that Requirements Collection and Analysis results in the following (informal)

description of the COMPANY miniworld:

The company is organized as a collection of departments.

 Each department

o has a unique name
o has a unique number
o is associated with a set of locations

o has a particular employee who acts as its manager (and who assumed that
position on some date)

o has a set of employees assigned to it
o controls a set of projects

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 23

 Each project
o has a unique name
o has a unique number

o has a single location

 has a set of employees who work on it
o is controlled by a single department

 Each employee
o has a name
o has a SSN that uniquely identifies her/him

o has an address
o has a salary
o has a sex
o has a birthdate
o has a direct supervisor
o has a set of dependents
o is assigned to one department

o works some number of hours per week on each of a set of projects (which need
not all be controlled by the same department)

 Each dependent

o has first name
o has a sex
o has a birthdate
o is related to a particular employee in a particular way (e.g., child, spouse, pet)
o is uniquely identified by the combination of her/his first name and the employee

of which (s)he is a dependent

2.8.3 Initial Conceptual Design of COMPANY database

Using the above structured description as a guide, we get the following preliminary design for
entity types and their attributes in the COMPANY database:

 DEPARTMENT(Name, Number, { Locations }, Manager, ManagerStartDate, {
Employees }, { Projects })

 PROJECT(Name, Number, Location, { Workers }, ControllingDept)
 EMPLOYEE(Name(FName, MInit, LName), SSN, Sex, Address, Salary, BirthDate,

Dept, Supervisor, { Dependents }, { WorksOn(Project, Hours) })
 DEPENDENT(Employee, FirstName, Sex, BirthDate, Relationship)

Remarks: Note that the attribute WorksOn of EMPLOYEE (which records on which projects the

employee works) is not only multi-valued (because there may be several such projects) but also

composite, because we want to record, for each such project, the number of hours per week that
the employee works on it. Also, each candidate key has been indicated by underlining.

For similar reasons, the attributes Manager and ManagerStartDate of DEPARTMENT really
ought to be combined into a single composite attribute. Not doing so causes little or no harm,

however, because these are single-valued attributes. Multi-valued attributes would pose some

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 24

difficulties, on the other hand. Suppose, for example, that a department could have two or more

managers, and that some department had managers Mary and Harry, whose start dates were 10-4-

1999 and 1-13-2001, respectively. Then the values of the Manager and ManagerStartDate

attributes should be { Mary, Harry } and { 10-4-1999, 1-13-2001 }. But from these two attribute

values, there is no way to determine which manager started on which date. On the other hand, by

recording this data as a set of ordered pairs, in which each pair identifies a manager and her/his

starting date, this deficiency is eliminated. End of Remarks

2.9 Relationship Types, Sets, Roles, and Structural Constraints

Having presented a preliminary database schema for COMPANY, it is now convenient to clarify
the concept of a relationship (which is the last of the three main concepts involved in the ER
model).

Relationship: This is an association between two entities. As an example, one can imagine a

STUDENT entity being associated to an ACADEMIC_COURSE entity via, say, an ENROLLED_IN

relationship.

Whenever an attribute of one entity type refers to an entity (of the same or different entity type),
we say that a relationship exists between the two entity types.

From our preliminary COMPANY schema, we identify the following relationship types (using
descriptive names and ordering the participating entity types so that the resulting phrase will be in
active voice rather than passive):

 EMPLOYEEMANAGESDEPARTMENT (arising from Manager attribute in

DEPARTMENT)
 DEPARTMENT CONTROLS PROJECT (arising from ControllingDept attribute in

PROJECT and the Projects attribute in DEPARTMENT)
 EMPLOYEE WORKS_FOR DEPARTMENT (arising from Dept attribute in EMPLOYEE

and the Employees attribute in DEPARTMENT)
 EMPLOYEESUPERVISESEMPLOYEE (arising from Supervisor attribute in

EMPLOYEE)
 EMPLOYEE WORKS_ON PROJECT (arising from WorksOn attribute in EMPLOYEE

and the Workers attribute in PROJECT)
 DEPENDENT DEPENDS_ON EMPLOYEE (arising from Employee attribute in

DEPENDENT and the Dependents attribute in EMPLOYEE).

In ER diagrams, relationship types are drawn as diamond-shaped boxes connected by lines to the

entity types involved. See Figure 3.2, page 62. Note that attributes are depicted by ovals connected
by lines to the entity types they describe (with multi-valued attributes in double ovals and

composite attributes depicted by trees). The original attributes that gave rise to the relationship
types are absent, having been replaced by the relationship types.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 25

A relationship set is a set of instances of a relationship type. If, say, R is a relationship type that

relates entity types A and B, then, at any moment in time, the relationship set of R will be a set of

ordered pairs (x,y), where x is an instance of A and y is an instance of B. What this means is that,

for example, if our COMPANY miniworld is, at some moment, such that employees e1, e3, and e6

work for department d1, employees e2 and e4 work for department d2, and employees e5 and e7

work for department d3, then the relationship set will include as instances the

ordered pairs (e1, d1), (e2, d2), (e3, d1), (e4, d2), (e5, d3), (e6, d1), and (e7, d3). See Figure 3.9 on page
71 for a graphical depiction of this.

2.9.1 Ordering of entity types in relationship types: Note that the order in which we list the

entity types in describing a relationship is of little consequence, except that the relationship name

(for purposes of clarity) ought to be consistent with it. For example, if we swap the two entity
types in each of the first two relationships listed above, we should rename them

IS_MANAGED_BY and IS_CONTROLLED_BY, respectively.

2.9.2 Degree of a relationship type: Also note that, in our COMPANY example, all relationship

instances will be ordered pairs, as each relationship associates an instance from one entity type

with an instance of another (or the same, in the case of SUPERVISES) relationship type. Such

relationships are said to be binary, or to have degree two. Relationships with degree three (called

ternary) or more are also possible, although not as common. This is illustrated in Figure 3.10 (page

72), where a relationship SUPPLY (perhaps not the best choice for a name) has as instances ordered

triples of suppliers, parts, and projects, with the intent being that inclusion of the ordered triple (s2,

p4, j1), for example, indicates that supplier s2 supplied part p4 to project j1).

Roles in relationships: Each entity that participates in a relationship plays a particular role in that

relationship, and it is often convenient to refer to that role using an appropriate name. For example,

in each instance of a WORKS_FOR relationship set, the employee entity plays the role of worker or

(surprise!) employee and each department plays the role of employer or (surprise!) department.

Indeed, as this example suggests, often it is best to use the same name for the role as for the

corresponding entity type.

An exception to this rule occurs when the same entity type plays two (or more) roles in the same

relationship. (Such relationships are said to be reCURsive, which I find to be a misleading use of
that term. A better term might be self-referential.) For example, in each instance of a SUPERVISES

relationship set, one employee plays the role of supervisor and the other plays the role of
supervisee.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 26

2.9.3 Constraints on Relationship Types

Often, in order to make a relationship type be an accurate model of the miniworld concepts that it
is intended to represent, we impose certain constraints that limit the possible corresponding

relationship sets. (That is, a constraint may make "invalid" a particular set of instances for a
relationship type.)

There are two main kinds of relationship constraints (on binary relationships). For illustration, let
R be a relationship set consisting of ordered pairs of instances of entity types A and

B, respectively.

 cardinality ratio:
o 1:1 (one-to-one): Under this constraint, no instance of A may particpate in more

than one instance of R; similarly for instances of B. In other words, if (a1, b1) and
(a2, b2) are (distinct) instances of R, then neither a1 = a2 nor b1 = b2. Example: Our
informal description of COMPANY says that every department has one employee
who manages it. If we also stipulate that an employee may not (simultaneously)
play the role of manager for more than one department, it follows that MANAGES is
1:1.

o 1:N (one-to-many): Under this constraint, no instance of B may participate in more
than one instance of R, but instances of A are under no such restriction. In
other words, if (a1, b1) and (a2, b2) are (distinct) instances of R, then it cannot be
the case that b1 = b2. Example: CONTROLS is 1:N because no project may be

controlled by more than one department. On the other hand, a department may

control any number of projects, so there is no restriction on the number of

relationship instances in which a particular department instance may participate.

For similar reasons, SUPERVISES is also 1:N.

o N:1 (many-to-one): This is just the same as 1:N but with roles of the two entity
types reversed.

Example: WORKS_FOR and DEPENDS_ON are N:1.

o M:N (many-to-many): Under this constraint, there are no restrictions. (Hence,
the term applies to the absence of a constraint!) Example: WORKS_ON is M:N,
because an employee may work on any number of projects and a project may have
any number of employees who work on it.

 Notice the notation in Figure 3.2 for indicating each relationship type's cardinality

 ratio.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 27

Suppose that, in designing a database, we decide to include a binary relationship R as described
above (which relates entity types A and B, respectively). To determine how R should be

constrained, with respect to cardinality ratio, the questions you should ask are these:

 participation: specifies whether or not the existence of an entity depends upon its
 being related to another entity via the relationship

o total participation (or existence dependency): To say that entity type A is
constrained to participate totally in relationship R is to say that if (at some
moment in time) R's instance set is

{ (a1, b1), (a2, b2), ... (am, bm) },

then (at that same moment) A's instance set must be { a1, a2, ..., am }. In other words,
there can be no member of A's instance set that does not participate in at least one
instance of R.

According to our informal description of COMPANY, every employee must be
assigned to some department. That is, every employee instance must participate in

at least one instance of WORKS_FOR, which is to say that EMPLOYEE satisfies the
total participation constraint with respect to the WORKS_FOR relationship.

In an ER diagram, if entity type A must participate totally in relationship type R, the
two are connected by a double line. See Figure 3.2.

o partial participation: the absence of the total participation constraint! (E.g., not
every employee has to participate in MANAGES; hence we say that, with respect to
MANAGES, EMPLOYEE participates partially. This is not to say that for all
employees to be managers is not allowed; it only says that it need not be the case
that all employees are managers.

2.9.4 Attributes of Relationship Types (page 76)

Relationship types, like entity types, can have attributes. A good example is WORKS_ON, each

instance of which identifies an employee and a project on which (s)he works. In order to record

(as the specifications indicate) how many hours are worked by each employee on each project, we

include Hours as an attribute of WORKS_ON. (See Figure 3.2 again.) In the case of an M:N

relationship type (such as WORKS_ON), allowing attributes is vital. In the case of an N:1, 1:N, or

1:1 relationship type, any attributes can be assigned to the entity type opposite from the 1 side. For

example, the StartDate attribute of the MANAGES relationship type can be given to either the

EMPLOYEE or the DEPARTMENT entity type.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 28

2.10 Weak Entity Types: An entity type that has no set of attributes that qualify as a key is called
weak. (Ones that do are strong.)

An entity of a weak identity type is uniquely identified by the specific entity to which it is related
(by a so-called identifying relationship that relates the weak entity type with its so-called

identifying or owner entity type) in combination with some set of its own attributes (called a

partial key).

Example: A DEPENDENT entity is identified by its first name together with the EMPLOYEE

entity to which it is related via DEPENDS_ON. (Note that this wouldn't work for former heavyweight
boxing champion George Foreman's sons, as they all have the name "George"!)

Because an entity of a weak entity type cannot be identified otherwise, that type has a total
participation constraint (i.e., existence dependency) with respect to the identifying relationship.

This should not be taken to mean that any entity type on which a total participation constraint
exists is weak. For example, DEPARTMENT has a total participation constraint with respect to

MANAGES, but it is not weak.

In an ER diagram, a weak entity type is depicted with a double rectangle and an identifying
relationship type is depicted with a double diamond.

Design Choices for ER Conceptual Design: Sometimes it is not clear whether a particular
miniworld concept ought to be modeled as an entity type, an attribute, or a relationship type. Here

are some guidelines (given with the understanding that schema design is an iterative process in
which an initial design is refined repeatedly until a satisfactory result is achieved):

 As happened in our development of the ER model for COMPANY, if an attribute of entity
type A serves as a reference to an entity of type B, it may be wise to refine that attribute

into a binary relationship involving entity types A and B. It may well be that B has a
corresponding attribute referring back to A, in which case it, too, is refined into the

aforementioned relationship. In our COMPANY example, this was exemplified by the
Projects and ControllingDept attributes of DEPARTMENT and PROJECT, respectively.

 An attribute that exists in several entity types may be refined into its own entity type. For

example, suppose that in a UNIVERSITY database we have entity types STUDENT,

INSTRUCTOR, and COURSE, all of which have a Department attribute. Then it may be

wise to introduce a new entity type, DEPARTMENT, and then to follow the preceding

guideline by introducing a binary relationship between DEPARTMENT and each of the

three aforementioned entity types.
 An entity type that is involved in very few relationships (say, zero, one, or possibly two)

could be refined into an attribute (of each entity type to which it is related).

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 29

Questions

1. Design an ER Diagram for keeping track of Information about Bank Database,Taking
into account 4 entities?

2. Describe how to map the following Scenario‘s in ER Model to schema,with suitable
exam ple:

3. List the summary of the notations for ER diagrams. Include symbols used in ER diagram
and their meaning.

4. With respect to ER model explain with example.

5. What is meant by partial key? Explain.
6. Define an entity and an attribute,explain the different types of attributes that occur in an

ER diagram model,with an example
7. Define the following with an example

i. Weak entity types

ii. Cardinality ratio

iii. Ternary relationship

iv. Participation constraints

