Maharaja Institute of Technology Mysore Department of Information Science & Engineering

Module 3
Chapter 1: Combinational Circuit Design and Simulation
using Gates.

EduKannada.Com

3.1 REVIEW OF COMBINATIONAL CIRCUIT DESIGN:

Steps involved in the design of a combinational switching circuit:

1. Set up a truth table which specifies the output(s) as a function of the input variables. If a
given combination of values for the input variables can never occur at the circuit inputs, the
corresponding output values are don’t-cares.

2. Derive simplified algebraic expressions for the output functions using Karnaugh Maps, or
Quine-McCluskey method, or any other similar procedure. The resulting algebraic
expressions are then manipulated into the proper form, depending on the type of gates to be
used in realizing the circuit.

3. When a circuit has two or more outputs, common terms in the output functions can often be
used to reduce the total number of gates or gate inputs.

4. Minimum two-level AND-OR, or NAND-NAND circuits can be realized using the
minimum sum-of-products. Minimum two-level OR-AND, or NOR-NOR circuits can be
realized using the minimum product-of-sums.

3.2DESIGN OF CIRCUITS WITH LIMITED GATE FAN-IN:

In practical logic design problems, the maximum number of inputs on each gate (or the fan-in)
is limited. Depending on the type of gates used, this limit may be two, three, four, eight, or some
other number. If a two-level realization of a circuit requires more gate inputs than allowed,
factoring the logic expression to obtain a multi-level realization is necessary.

Example: Realize f (a.b,c,d) = ¥m(0,3,4,5,8,9,10,14,15) using three input NOR gates.

Solution:

The product-of-sum equation is:
f= (a'+b'+c)(a+b'+c')(a+c'+d)(a+b+c+d')(a'+b+c'+d')
As can be seen from the preceding expression, a two-level realization requires three-three

input gates, two four-input gates and one five-input gate. The expression for f " is factored to
reduce the maximum number of gate inputs to three and, then, it is complemented.

Orf = abc' +a'bc+a’cd +a'b'c'd+ab'cd
ie. f =abc + a'c(b + d') + b'd(ayc' +ac

Orf = [(a +b+ c)][(a + c') + (b'd)][(b + d') + (a + c)(a' + c)]

ADE (21CS33), Module 3: Combinational Circuit Design and Simulation Using Gates. Page 59

Maharaja Institute of Technology Mysore Department of Information Science & Engineering

E?

P, EduKannada.Com

Example: Realize the following functions using only two-input NAND gates ond inverters.

fl= Zm(0,2,3,4,5) f2= Zm(0,2,3,4,7) f3= Zm(1,2,6,7)

Solution:
a a a

be) b\, B

1 |(1) i | i))

1 (I

1 (1) 1) 1

1 } 1)) 1 1)
fl= 2m(0,2,3,4,5) f2= 2m(0,2,3,4,7) f3= Zm(0,2,3,4,5)
fl=b'c +ab +ab f2=b'c’ +bc+ab f3=ab'c+ab+bc'

Each function requires a three-input OR gate; so we will factor to reduce the number of gate
inputs:

fi=bla+c)+ab
f2=b(a'+c)+b'c' or f2=(b'+c)(b+c')+@
f3=ab'c+ b(u+ c')

The second expression for f2 has term common tof 1, so we will choose the second expression.
We can eliminate the remaining three-input gate from f3 by noting that

abc= a'(b'c) = a’(b + c')'

Figure shows the resulting circuit, using common terms a'b and a + ¢ because each output
gate is an OR, the conversion to NAND gates, as shown in Figure (b), is straightforward.

(b)

ADE (21CS33), Module 3: Combinational Circuit Design and Simulation Using Gates. Page 60

Maharaja Institute of Technology Mysore Department of Information Science & Engineering

3.3 GATE DELAYS AND TIMING DIAGRAMS:

When the input to a logic gate is changed, the output will not change instantaneously. The gates
take a finite time to react to a change in input, so that the change in the gate output is delayed
with respect to the input change. The following Figure shows possible input and output

waveforms for an inverter:
x| {
Time

1 1
]]
.

I
.
|

Time
I

2

x—{>>o—x

FIGURE: Propagation Delay in an Inverter

If the change in output is delayed by time, €, with respect to the input, we say that, the gate has
a propagation delay of €. In practice, the propagation delay for a 0 to 1 output change may be
different than the delay for a 1 to 0 change. In many cases these delays can be neglected.
However, in the analysis of some types of sequential circuits, even short delays may be
important. The following Figure shows the timing diagram for a circuit with two gates:

T T

Gy -»:20 nsf~— 20 nspe

Gy 1 :
L 1 I ! !
20 40 60 80 100 120 140 t(ns)

20 ns| 120 nsi~

FIGURE: Timing Diagram for AND-NOR Circuit
Assume that, each gate has a propagation delay of 20 ns (nanoseconds). This timing diagram
indicates what happens when gate inputs B and C are held at constant values 1 and 0,
respectively, and input A is changed to 1 at 7 = 40 ns and then changed back to 0 at t = 100 ns.
The output of gate G1 changes 20 ns after A changes, and the output of gate G2 changes 20 ns
after G1 changes.

Rising edge Falling edge

N i

X T ' T ' i

0 1 K i

1 T T T 1 T

g y i i F_’_r——l
K@A : T -+ : ;

& L | t i

z r [D 1 \[1

0 (! O (S | OO

0. L. 2 3.4 6 7 8 9 10

Time (microseconds)

EduKannada.Com|

FIGURE: Timing Diagram for Circuit with Delay

ADE (21CS33), Module 3: Combinational Circuit Design and Simulation Using Gates. Page 61

Maharaja Institute of Technology Mysore Department of Information Science & Engineering

3.4 HAZARDS IN COMBINATIONAL LOGIC:

When the input to a combinational circuit changes, unwanted switching transients may appear

in the output. These transients occur when different paths from input to output have different

propagation delays.

e If, in response to any single input change and for some combination of propagation delays,
a circuit output may momentarily go to 0 when it should remain a constant 1, we say that
the circuit has a static 1-hazard.

e Similarly, if the output may momentarily go to 1 when it should remain a 0, we say that the
circuit has a static 0-hazard.

o If, when the output is supposed to change from 0 to 1 (or 1 to 0), the output may change
three or more times, we say that the circuit has a dynamic hazard.

The followmg Figure shows pmslblc outputs from a circuit with hazards:
1

JL | [' T

(b) Static 0-hazard (<) Dynamic hazards

FIGURE: Types of Hazards

Note that hazards are properties of the circuit and are independent of the delays existing in the
circuit. The following Figure illustrates a circuit with a static 1-hazard.

F

F=AB'+BC

(a) Circuit with a static 1-hazard

" |
D e
i :
P L ! 1
r T 4 .
| 1 [

1 1 L
Ons 10 ns 20 ns 30 ns 40 ns. S0 ns 60 ns

(b) Timing chart

FIGURE: Detection of a 1-Hazard

ADE (21CS33), Module 3: Combinational Circuit Design and Simulation Using Gates. Page 62

Maharaja Institute of Technology Mysore Department of Information Science & Engineering

IfA=C=1,then F=B + B’ = I,so the F output should remain a constant 1 when B changes
from 1 to 0. However, as shown in Figure (b), if each gate has a propagation delay of 10 ns, E
will go to 0 before D goes to 1, resulting in a momentary 0 (a glitch caused by the 1-hazard)
appearing at the output F. Note that right after B changes to 0, both the inverter input (B) and
output (B”) are 0 until the propagation delay has elapsed. During this period, both terms in the
equation for F are 0, so F momentarily goes to 0.

Detection of Static 1 Hazard: Hazards can be detected using a Karnaugh map (see above
Figure). As seen on the map, no loop covers both minterms ABC and ABC". So if A=C =1 and
B changes, both terms can momentarily go to 0, resulting in a glitch in F. We can detect hazards
in a two-level AND-OR circuit, using the following procedure:
1. Write down the sum-of-products expression for the circuit.

2. Plot each term on the map and loop it.

3. Ifany two adjacent 1’s are not covered by the same loop, a 1-hazard exists for the transition
between the two 1’s. For an n-variable map, this transition occurs when one variable changes
and the other n — I variables are held constant.

To Eliminate Static 1 Hazard: 1f we add a loop to the map of above Figure and, then, add the
corresponding gate to the circuit (as shown in the following Figure), this eliminates the hazard.
The term AC remains / while B is changing, so no glitch can appear in the output. Note that '
is no longer a minimum sum of products.

A
BEZY
o o (1)

EduKannada.Com

FIGURE: Circuit with Hazard Removed

Detection of Static 0 Hazard: The following Figure shows a circuit with several 0-hazards. The
product-of-sums representation for the cigcuit outpuyt is
F=(A+C§ A’+D’i(5’+c’+n

The Karnaugh map for this function (see following Figure) showsfour pairs of adjacent 0’s that
are not covered by a common loop as indicated by the arrows. Each of these pairs corresponds
to a 0-hazard. For example, when A =0, B = 1, D =0, and C changes from 0 to 1, a spike may
appear at the Z output for some combination of gate delays. The timing diagram of (shown
below) illustrates this assuming gate delays of 3 ns for each inverter, and of 5 ns for each AND
gate and each OR gate.

s at5ns,0-1

at10ns,0-1

No v
X at13ns,1-0
at8ms,1-0
(a) Circuit with a static 0-hazard (b) Karnaugh map for circuit of (a)

ADE (21CS33), Module 3: Combinational Circuit Design and Simulation Using Gates. Page 63

Mabharaja Institute of Technology Mysore Department of Information Science & Engineering

1
8§ 10 13 15 18 20

(¢) Timing diagram illustrating 0-hazard of (a)

To Eliminate Static 0 Hazard: We can
eliminate the O-hazards by looping
additional prime implicants that cover
the adjacent 0’s that are not already
covered by a common loop. This
requires three additional loops as
shown in shown in the following
Figure. The resulting circuit requires
seven gates in addition to the inverters,
as given by below expression.

FIGURE: KarnaughL Map Removing Hazards
F= (A + c)(A’ + D')(B' +C + D)(C + D')(A +B + D)(A' +B + c')

Hazards in circuits with more than two levels can be determined by deriving either a SOP or
POS expression for the circuit that represents a two-level circuit containing the same hazards as
the original circuit. The SOP or POS expression is derived in the normal manner except that the
complementation laws are not used, i.e., xx’ =0 and x + x” = / are not used. Consequently, the
resulting SOP (POS) expression may contain products (sums) of the form xx’a (x +x’ + f). (a
is a product of literals or it may be null; £ is a sum of literals or it may be empty).

Dynamic Hazard: A dynamic hazard exists if there is a term of the form xx ' and two conditions
are satisfied: (1) There are adjacent input combinations on the Karnaugh map differing in the
value of x, with & = 1 and with opposite function values, and (2) for these input combinations
the change in x propagates over at least three paths through the circuit. Consider the following
expression and its Karnaugh map;

f=a'dd+bc'd+bed’ + acd’

Do) f=(c +ad +bd)(c+a'd+ bd)
- " =cc' +acd' + bed' + a'c'd + aa'dd’ + a'bdd’ + be'd + abdd’ + bdd'
|]e =cc’ + acd' + bed' + a'c'd + aa'dd' + bc'd + bdd'

ADE (21CS33), Module 3: Combinational Circuit Design and Simulation Using Gates. Page 64

Maharaja Institute of Technology Mysore Department of Information Science & Engineering

The circuit does not contain any static 1-hazards because each pair of adjacent 1’s are covered
by one of the product terms. Potentially, the terms cc’ and bdd’ may cause either static 0- or
dynamic hazards or both; the first for ¢ changing and the second for d changing.

To design a circuit which is free of static and dynamic hazards, the following procedure
may be used:

1. Find a sum-of-products expression (FQ for the output in which every pair of adjacent 1’s is
covered by a 1-term.(The sum of all prime implicants will always satisfy the condition.) A
two-level AND-OR circuit based on this F¢ will be free of 1-,0-, and dynamic hazards.

2. If a different form of the circuit is desired, manipulate F'to the desired form by simple
factoring, DE Morgan’s laws, etc. Treat each x; and x'; as independent variables to prevent
introduction of hazards.

3.5 SIMULATION AND TESTING OF LOGIC CIRCUITS:

An important part of the logic design process is verifying that the final design is correct
and debugging the design if necessary. Logic circuits may be tested either by actually building
them or by simulating them on a computer. Simulation is generally easier, faster, and more
economical. As logic circuits become more and more complex, it is very important to simulate
adesign before actually building it. This is particularly true when the design is built in integrated
circuit form, because fabricating an integrated circuit may take a long time and correcting errors
may be very expensive. Simulation is done for following reasons: (1) Verification that the design
is logically correct, (2) Verification that the timing of the logic signals is correct, and (3)
Simulation of faulty components in the circuit as an aid to finding tests for the circuit. A simple
simulator for combinational logic works as follows:

1. The circuit inputs are applied to the first set of gates in the circuit, and the outputs of those
gates are calculated.

2. The outputs of the gates which changed in the previous step are fed into the next level of
gate inputs. If the input to any gate has changed, then the output of that gate is calculated.

3. Step 2 is repeated until no more changes in gate inputs occur. The circuit is then in a steady-
state condition and the outputs may be read.

4. Steps I through 3 are repeated every time a circuit input changes.

Four-Valued Logic Simulator:

The two logic values, 0 and 1, are not sufficient for simulating logic circuits. At times,
the value of a gate input or output may be unknown, and we will represent this unknown value
by X. At other times we may have no logic signal at an input, as in the case of an open circuit
when an input is not connected to any output. We use the logic value Z to represent an open
circuit, or high impedance (hi-Z) connection. The following Figure shows a typical simulation
screen on a personal computer.
1 Probe

(a) Simulation screen showing switches (b) Simulation screen with missing gate input

ADE (21CS33), Module 3: Combinational Circuit Design and Simulation Using Gates. Page 65

Maharaja Institute of Technology Mysore Department of Information Science & Engineering

The following Table shows AND and OR functions for four-valued logic simulation. These
functions are defined in a manner similar to the way real gates work.

TABLE: AND and OR Functions
for Four-Valued Simulation

<o 1 X 2z 0. 1l X 2
ofo 00 0 ofo 1 x x
1|0 1 X% 1T A
x|o x X X XX 1 X x
z]lo x X X Z X 1 X X

For an AND gate,
o If one of the inputs is 0, the output is always 0 regardless of the other input

o If one input is / and the other input is X (we do not know what the other input is), then the
output is X (we do not know what the output is)

o If one input is / and the other input is Z (it has no logic signal), then the output is X (we do
not know what the hardware will do).

For an OR gate,

e If one of the inputs is 7, the output is 1 regardless of the other input

e If one input is 0 and the other input is X or Z, the output is unknown.
If a circuit output is wrong for some set of input values, this may be due to several possible

causes:
1. Incorrect design

2. Gates connected wrong
3. Wrong input signals to the circuit
If the circuit is built in lab, other possible causes include
4. Defective gates
5. Defective connecting wires.

Example:
The function F=AB C'D+CD’ +(A'B'(C+D) is realized by the circuit shown below:

FIGURE: Logic Circuit with Incorrect Output

When a student builds the circuit in a lab, he finds that when A =B =C =D = I, the output F
has the wrong value, and that the gate outputs are as shown in above Figure. The reason for the
incorrect value of F can be determined as follows:

1. The output of gate 7 (F) is wrong, but this wrong output is consistent with the inputs to gate
7, that is, 1 + 0 = 1.Therefore, one of the inputs to gate 7 must be wrong.

2. In order for gate 7 to have the correct output (F = 0), both inputs must be 0. Therefore, the
output of gate 5 is wrong. However, the output of gate 5 is consistent with its inputs because
1.1.1 = 1. Therefore, one of the inputs to gate 5 must be wrong.

ADE (21CS33), Module 3: Combinational Circuit Design and Simulation Using Gates. Page 66

Maharaja Institute of Technology Mysore Department of Information Science & Engineering

3. Either the output of gate 3 is wrong, or the A or B input to gate 5 is wrong. Because C'D +
CD’= 0, the output of gate 3 is wrong.

4. The output of gate 3 is not consistent with the outputs of gates 1 and 2 because 0 + 0 # 1.
Therefore, either one of the inputs to gate 3 is connected wrong, or gate 3 is defective, or
one of the input connections to gate 3 is defective.

ADE (21CS33), Module 3: Combinational Circuit Design and Simulation Using Gates. Page 67

Maharaja Institute of Technology Mysore Department of Information Science & Engineering

Module 3

Chapter 2: Multiplexers, Decoders, & Programmab
Logic Devices.

3.6 INTRODUCTION:

Integrated circuit may be classified as small-scale integration SSI, medium scale
integration MSI, large-scale integration LSI, or very large-scale integration VLSI, depending on
the number of gates in each integrated circuit package and the type of function performed.

SSI functions include NAND, NOR, AND, and OR gates, inverters, and flip-flops. SSI
integrated circuit package is typically contain 1 to 4 gates, six inverters, or one or two flip-flops.
The MSI integrated circuits such as adders, multiplexers, decoders, registers, and counters,
perform more complex functions. Such integrated circuits typically contain the equivalent of 12
to 100 gates in one package. More complex functions such as memories and microprocessors
are classified as LSI or VLSI integrated circuits. An LSI integrated circuit generally contains
100 to a few thousands gates in a single package, and VLSI integrated circuit contain several
thousand gates or more.

Itis generally uneconomical to design digital systems using only SSI and MSlintegrated
circuit. By using LST and VLSI functions, the required number of integrated circuit packages is
generally reduced. The cost of mounting and wiring the integrated circuit as well as the cost of
designing and maintaining the digital system may be significantly lower than the LSI and VLST
functions are used.

3.7 MULTIPLEXERS:

A multiplexer (or data selector, abbreviated as MUX) has a group of data inputs and a
group of control inputs. The control inputs are used to select one of the data inputs and connect
it to the output terminal. The following Figure shows a 2-to-1 multiplexer.

Ly »In'__
Z i Z ,
; = Z=Aly+AlL
‘ :
I

L—e
A A

FIGURE: 2-to-1 Multiplexer and Switch Analog

When the control input A is 0, the switch is in the upper position and the MUX output
is Z=10; when A is 1, the switch is in the lower position and the MUX output is Z = I1. In other
words, a MUX acts like a switch that selects one of the data inputs (I0 or I1) and transmits it to
the output. The logic equation for the 2-to-1 MUX is therefore: Z = A'l0 + AL

The following Figure shows diagrams for a 4-to-1 multiplexer, 8-to-1 multiplexer, and
2n-to-1 multiplexer.

ADE (21CS33), Module 3: Combinational Circuit Design and Simulation Using Gates. Page 68

Maharaja Institute of Technology Mysore Department of Information Science & Engineering

Zo 1o —>]
i 7 7 —>
Data | /1 - 7 27 data
inputs | ;. “ 12 lines
- 3= P
s Iy—>] =
Is
A B ‘6 ——
1y n control
Control inputs
inputs

ABC

FIGURE : Multiplexers
The 4-to-1 MUX acts like a four-position switch that transmits one of the four inputs to the
output. Two control inputs (A and B) are needed to select one of the four inputs. If the control
inputs are AB = 00, the output is I0; similarly, the control inputs 01, 10, and 11 give outputs of
11, 12, and I3, respectively. The 4-to-1 multiplexer is described by the equation:
Z=A'B'l+ABI; + AB'I, + ABI,
Similarly, the 8-to-1 MUX selects one of eight data inputs using three control inputs.

SB I, @b cly @bcl, @bcly abcly abcls abclsg abcl;

AL

7
FIGURE: Logic Diagram for 8-to-1 MUX

It is described by the equation:
Z=ABCly+ AB'Cl; + ABC' + ABCI; + AB'C'l, + AB'CI5 + ABC'l; + ABCI,

Multiplexers can also have an additional input called an enable input. If the OR gate in
the above Figure is replaced by a NOR gate, then the 8-to-1 MUX inverts the selected input. To
distinguish between these two types of multiplexers, we will say that the multiplexers without
the inversion have active high outputs, and the multiplexers with the inversion have active low
outputs. In general, a multiplexer with n control inputs can be used to select any one of 2n data
inputs. The general equation for the output of a MUX with n control inputs and 2n data inputs
is:

2n-1

Z =% myly
k=0
‘Where m, is a minterm of the n control variables and I is the corresponding data input.

There are several other implementations of the 8-to-1 MUX. Each of the gates shown in the
figure above can be replaced by NAND gates to obtain NAND Gate implementation. If an NOR
gate implementation is wanted, the equation for Z can be written as a product of sums:

ADE (21CS33), Module 3: Combinational Circuit Design and Simulation Using Gates. Page 69

Maharaja Institute of Technology Mysore Department of Information Science & Engineering
Z=gA+B+C+I A+B+C+1)(A+B +Cc+1L,)(A+B +C +1;
(+B+C+I1,)(A+B+C+I5)(A+B +C+I)([A+B +C +1;
Implementations with more than two levels of gates can be obtained by factoring the equation
for Z. For example if multiple level and NAND-gate implementation is desired, above equation

can be factored, One factorjzation i
Z=AB (c I+ Cllj + A'BZC’I: + 613) + AB’(C’I4 + 615) + AB(C'16 + c:,)

The corresponding NAND gate circuit is shown in the figure below. Note that the data inputs
are connected to four 2-to-1 MUXSs with C as a select line, and the output of these 2-to-1 MUXs
are connected to 4-to-1 MUX with A and B as a select lines. Figure below shows this in a block
diagram form.

ce
FIGURE : A Multi-Level Implementation of an 8-to-1 MUX

ADE (21CS33), Module 3: Combinational Circuit Design and Simulation Using Gates. Page 70

Maharaja Institute of Technology Mysore Department of Information Science & Engineering

C—

FIGURE : Component MUXs of Figure 9-4

Multiplexers are frequently used in digital system design to select the data which is to be
processed or stored. The following Figure shows how a quadruple 2-to-1 MUX is used to select
one of two 4-bit data words. If the control A = 0, the values of x0, x1, x2,and x3 will appear at
the 0, z1, 22, and z3 outputs; if A = 1, the values of y0, y1, y2, and y3 will appear at the outputs.

5 2 zz z-
2-to-1 2t0-1 2-to-1
bt
|
X5 Yo X0 (2 yl X3 V:

FIGURE: Quad Multiplexer Used to Select Data

Four combinations of multiplexers with an enable are possible. The output can be active high
or active low, whereas the enable can be active high or active low. In a block diagram for the
MUX, an active low line is indicated by inserting a bubble on the line to indicate the inclusion
of an inversion. Figure below shows this combination for 4 to 1 MUX.

& E E
Iy Iy I Q
, z 1 bz 11
L I b
Iy 3 I3
(@ (b) (© ()

FIGURE Active-High, Active-Low Enable and Output Combinations

ADE (21CS33), Module 3: Combinational Circuit Design and Simulation Using Gates. Page 71

Maharaja Institute of Technology Mysore Department of Information Science & Engineering

In addition to acting as a data selector, a MUX can implement more general logic functions. In
figure below a4 to 1 mux is used to implement the function

zZ= c'D'(A’ + B’) + c’D(A’) + CD'(AB’ + A'B) + cn'(o)
=AC +ABD +AB'D'
Given a switching function, a MUX implementation can be obtained using Shannon’s expansion
of the function. In general the complexity of the implementation will depend upon which

function inputs are used as the MUX select inputs, so it is necessary to try different combination
to obtain the simplest solution.

a D
FIGURE: Four-Variable Function Implemented with a 4-to-1 MUX

3.8 THREE-STATE BUFFERS

A gate output can only be connected to a limited number of other device inputs without
degrading the performance of a digital system. A simple buffer may be used to increase the
driving capability of a gate output. The following Figure shows a buffer connected between a
gate output and several gate inputs. Because no bubble is present at the buffer output, this is a
non-inverting buffer, and the logic values of the buffer input and output are the same, that is,
=C.

FIGURE: Gate Circuit with Added Buffer
Normally, a logic circuit will not operate correctly if the outputs of two or more gates or other
logic devices are directly connected to each other. Use of three-state logic permits the outputs
of two or more gates or other logic devices to be connected together. The following Figure
shows a three-state buffer and its logical equivalent.

ADE (21CS33), Module 3: Combinational Circuit Design and Simulation Using Gates. Page 72

Maharaja Institute of Technology Mysore Department of Information Science & Engineering

|
|
A c = A—l>—o/o—(?

FIGURE: Three-State Buffer

When the enable input B is 1, the output C equals A; when B is 0, the output C acts like an open
circuit. In other words, when B is 0, the output C is effectively disconnected from the buffer
output so that no current can flow. This is often referred to as a Hi-Z (high-impedance) state of
the output because the circuit offers a very high resistance or impedance to the flow of current.
Three-state buffers are also called tri-state buffers. The following Figure shows the truth tables
for four types of three-state buffers.

B B B B
|

A C A Cc A & 1—&0—(
B "A| '€ B A |C€C B AJ|JC B A |C
o o/l z o o |z o oo 0o 0 |1
o 1| z o 1 2 a 11 & 1]0
1 0l 0o 1 0 # 4 o pzrer oo]z
14 LI | o 1 1 |z 1 1|z

(a) (b) (© @

FIGURE : Four Kinds of Three-State Buffers
In Figures (a) and (b), the enable input B is not inverted, so the buffer output is enabled when B
=1 and disabled when B = 0. That is, the buffer operates normally when B = 1, and the buffer
output is effectively an open circuit when B = 0. We use the symbol Z to represent this high-
impedance state. In Figure (b), the buffer output is inverted so that C = 4’ when the buffer is
enabled. The buffers in Figures (c) and (d) operate the same as in (a) and (b) except that the
enable input is inverted, so the buffer is enabled when B = 0.

In the following Figure, the outputs of two three-state buffers are tied together. When B
=0, the top buffer is enabled, so that D = A; when B = 1, the lower buffer is enabled, so that D
= C. Therefore, D=B'A+BC. This is logically equivalent to using a 2-to-1 multiplexer to select
the A input when B = 0 and the C input when B = 1.

A A

B
FIGURE: Data Selection Using Three-State Buffers

When we connect two three-state buffer outputs together, as shown in the following
Figure, if one of the buffers is disabled (output = Z), the combined output F is the same as the
other buffer output. If both buffers are disabled, the output is Z. If both buffers are enabled, a
conflict can occur. If A =0 and C = 1, we do not know what the hardware will do, so the F
output is unknown (X). If one of the buffer inputs is unknown, the F output will also be
unknown. The table in the following Figure summarizes the operation of the circuit. S1 and S2
represent the outputs the two buffers would have if they were not connected together. When a
bus is driven by three-state buffers, we call it a three-state bus. The signals on this bus can have
values of 0, 1, Z, and perhaps X.

ADE (21CS33), Module 3: Combinational Circuit Design and Simulation Using Gates. Page 73

Maharaja Institute of Technology Mysore Department of Information Science & Engineering

FIGURE: Circuit with Two Three-State Buffers
A multiplexer may be used to select one of several sources to drive a device input. For
example, if an adder input must come from four different sources; a 4-to-1 MUX may be used
to select one of the four sources. An alternative is to set up a three-state bus, using three-state
buffers to select one of the sources (see the following Figure). In this circuit, each buffer symbol
actually represents four three-state buffers that have a common enable signal.

E= apie |4 o
pr—— S 1011
adder

4
EnA Ent En- EaD p
4 4] 4 4 e
A I C D

FIGURE: 4-Bit Adder with Four Sources for One Operand

Integrated circuits are often designed using bi-directional pins for input and output. Bi-
directional means that the same pin can be used as an input pin and as an output pin, but not
both at the same time. To accomplish this, the circuit output is connected to the pin through a
three-state buffer, as shown in the following Figure. When the buffer is enabled, the pin is driven
with the output signal. When the buffer is disable;dlQ an external source can drive the input pin.

Output

Input
foTopt

FIGURE: Integrated Circuit with Bi-Directional Input-Output Pin
3.9 Decoders and Encoders:

The decoder is another commonly used type of integrated circuit. The following Figure shows
the diagram and truth table for a 3-to-8 line decoder. This decoder generates all of the minterms
of the three input variables. Exactly one of the output lines will be 1 for each combination of the

values of the input variables.

yo=abe abc VoY1 Y2 ¥Ys¥a¥s ¥s ¥
yp=abc 000 | 10000000
|),—wse 001 [01000000
a—] 010 | 00100000
A Biit!?f -y =a'bc 011 00010000
decoder |—>ya=ab@ 100 | 00001000
c i 101 | 00000100
_T 7= 110 | 00000010
B 1111 00000001

>y, =abe

FIGURE: A 3-to-8 Line Decoder

The following Figure illustrates a 4-to-10 decoder. This decoder has inverted outputs
(indicated by the small circles). For each combination of the values of the inputs, exactly one of
the output lines will be 0. When a binary-coded-decimal digit is used as an input to this decoder,
one of the output lines will go low to indicate which of the 10 decimal digits is present.

ADE (21CS33), Module 3: Combinational Circuit Design and Simulation Using Gates. Page 74

Maharaja Institute of Technology Mysore Department of Information Science & Engineering

Toputs
{ B ¢ D BCD Input Decimal Output
ABCD | 0123456789
0000 0111111111
0001 1011111111
0010 1104179141
0011 1110111111
0100 1111011111
0101 1111101111
1 T ol 0110 1111110111
J ! T 0111 1111111011
Higiigninig J_ 1000 TA:1111101
1001 1111111110
- 1010 1111111111
1011 1111111111
1100 A LT eI
14 % B % a4 o9 8 4 1101 BN ERE R
1110 1111111111
Outputs 1111 1111111111
$lLegedagan (¢) Truth Table

. 1.1 1

¥y ¥ ¥ %

4 B C D

7442

O O

ms ms m5 mi oms my mi my mp omj

(b) Block diagram

In general, an n-to-2" line decoder generates all 2" minterms (or maxterms) of the n input
variables. The outputs are defined by the equations:

yi=mi s i=0to 2"~ I (non-inverted outputs)

or

i=m;'= M, i =0to2"— I (inverted outputs)

Where m; is a minterm of the n input variables and M; is a maxterm.

Because an n-input decoder generate all the minterms of n variables, n-variable
functions can be realized by ORing together selected minterm outputs from a decoder. If the
decoder outputs are inverted, then then NAND gates can be used to generate the functions, as
illustrated in the fgllowing ¢xample.

Realize flza, b,c, dj =my +my + my and fz(a, b,c, d) =my + my+mgy

ADE (21CS33), Module 3: Combinational Circuit Design and Simulation Using Gates. Page 75

Maharaja Institute of Technology Mysore Department of Information Science & Engineering

FIGURE: Realization of a Multiple-Output Circuit Using a Decoder

An encoder (converts an active input signal to a coded output signal) performs the inverse
function of a decoder. The following Figure shows a 8-to-3 priority encoder with inputs yO
through y7. If input yi is 1 and the other inputs are 0, then the abc outputs represent a binary
number equal to i. For example, if y3 = 1, then abc = 011.

e YoviYVaVaVaYs Ye¥s | abc d
e , 00000O0DO0O 000 0
¥ | ., 10000000 000 1
¥3 ng;g;f | .. X1000000 001 1
¥s B XX100000 010 1
¥s XXX10000 011 1
¥s 4 % xxx41000 100 1
o XXX X 100 101 1
‘ XXXXXX10 110 1

XX XXXXX1 111 1

FIGURE: An 8-to-3 Priority Encoder

If more than one input is 1 at the same time, the output can be defined using a priority
scheme. The truth table in the above Figure uses the following scheme: If more than one input
is 1, the highest numbered input determines the output. For example, if inputs y1, y4, and y5 are
1, the output is abc = 101.The X’s in the table are don’t-cares; for example, if Ys is 1, we do not
care what inputs y0 through y4 are. Output d is 1 if any input is 1, otherwise, d is 0. This signal
is needed to distinguish the case of all 0 inputs from the case where only y0 is 1.

3.10 MEMORIES:

A read only memory ROM consists of an array of Semiconductor devices that are
interconnected to store an area of a binary data. Once binary data is stored in the ROM, it can
be read out whenever desired, but the data that is stored cannot be changed under normal
operating conditions. Figure (a) below shows a ROM which has three input lines and a 4 output
lines. Figure (B) shows the typical truth table which relates the ROM inputs and outputs.

Thre B 000
. c 001
Lc Typical Data
010 Stored in
011 ROM
FoF\ Py Fy : g ? (2* words of
Four Output Lines 11 0 A piisicac)
111

(a) Block disgram
(b) Truth table for ROM

FIGURE: An 8-Word x 4-Bit ROM
For each combination of input values on the three input lines, the corresponding
patterns of 0’s and 1’s appear on the ROM output lines. For example, if the combination ABC
=010 is applied to the input lines, the patterns of FoFi1F2F3 =0111 appears on the output lines.
Each of the output patterns that is stored in the ROM is called a word. Because the ROM has

ADE (21CS33), Module 3: Combinational Circuit Design and Simulation Using Gates. Page 76

Maharaja Institute of Technology Mysore Department of Information Science & Engineering

three input lines, we have 23 = 8 different combinations of input values. Each input
combinations serves as an address which can select one of the eight words stored in the
memory. Because there are four output lines, each word is four bits long and the size of this
ROM is an 8 words X 4 bits.

A ROM which has n input lines and m output lines (shown in figure below) contains an
array of 2" words, and each word is m-bits long. The input lines serve as an address to select
one of the 2" words. When an input combination is applied to ROM, the patterns of 0’s and
1’s which is stored in the corresponding word in the memory appears at the output lines. For
the example in figure if 00...11 is applied to the input (address lines) of the ROM, the word
110... 010 will be selected and transferred to the output lines. A 2" X m ROM can realize m
functions of n variables because it can store a truth table with 2" rows and m columns. Typical
sizes of commercially available from range from 32 words X 4 bits to 512k words X 8 bits, or
larger.

n Input m Output
RN Variables | Variables
2" Words
X Bits
[l l :
Yy Typical Data
. Array Stored
+ Qutput Lines ey
(2" words of
mbits each)

FIGURE: Read-Only Memory with n Inputs and m Outputs
ROM basically consists of decoder and a memory array as shown in the figure below.
When a pattern of 0’s and 1’s is applied to a decoder inputs, exactly one of the 2" decoder
output is one. This decoder output line selects one of the words in the memory array, and the
bit pattern stored in this word is transferred to the memory output lines.

n Input
Lines

Memory Array
2" Words X m Bits

"l

—_—
#1 Output Line:

FIGURE: Basic ROM Structure

Figure below illustrates one possible internal structure of 8-word X 4bit ROM.

ADE (21CS33), Module 3: Combinational Circuit Design and Simulation Using Gates. Page 77

Maharaja Institute of Technology Mysore Department of Information Science & Engineering

~a o\
" Gupu

Foer
FIGURE: An 8-Word x 4-Bit ROM

The decoder generate the 8 minterms of the three input variables. The memory array forms the
four output functions by ORing together selected minterms. A switching element is placed at
the intersection of the word line and output line if the corresponding mid-term is to be included
in the output function; otherwise, the switching element is omitted (or not connected). If
switching element connects an output line to a word line which is 1, the output line will be one.
Otherwise, the pull down resistor at the top of the figure cause the output line to be 0. So the
switching element which are connected in this way in the memory array effectively form an
OR gate for each of the output functions. For example m0, m1, m4 and m6 are ORed together
to form Fo. Figure below shows the equivalent OR gate.

FIGURE: Equivalent OR Gate for F,
In general, those minterms which are connected to output lines by switching elements
ORed together to form the output F;. Thys the ROM in figure generates the following function:
Fy =tm(0,1,4,6) = AB" + AC’
F, =¥m(2.3,4,67) =B+ AC'
F, =1m[0,1,2,6) = AB' + BC'
F3=¥m(235,67)=AC+B

Figure below shows an internal diagram of the ROM. The switching elements are the
intersection of the rows and columns of the memory are indicated using X's. And X indicates
that the switching element is present and connected, and no X indicates that corresponding
element is absent or not connected.

g
Q22 5

S P

Decoder [777
Inputs | ¥ —] POSOUCE 550

z — o

S 7ot
o 7 - =
RONM {,\/ —] ' Hrtoill

Ay Ay Ay A, A,
ROM Outputs
FIGURE: ROM Realization of Code Converter

Three common types of ROMs are Mask Programmable ROMs, Programmable ROMs
(PROMS), and electrically erasable Programmable ROMs (EEPROMS). At the time of the
manufacture the data are is permanently stored in a mask Programmable ROM. This is

ADE (21CS33), Module 3: Combinational Circuit Design and Simulation Using Gates. Page 78

Maharaja Institute of Technology Mysore Department of Information Science & Engineering

accomplished by selectively including our omitting the switching elements at the row column
intersections of the memory are. This requires preparation of a special mask, which is used
during fabrication of the Integrated circuit. Preparation of this mask is expensive so the use of
mask Programmable ROM is economically feasible only if a large quantity (typically several
thousand or more) is required with the same data are. If the small quantity of the Rhombus is
required with the given data are a, hi proms may be used.

Modification of the data stored in ROM is often necessary during the developmental phases
of a digital system, So EEPROM:s are used instead of mask Programmable ROMs. EEPROM
use a special charge storage mechanism to enable or disable the switching element in the
memory array. A PROM programmer is used to provide appropriate voltage pulses to store
electronic charges in the memory allocation. Data stored in this manner is generally permanent
until erased.

3.11 PROGRAMMABLE LOGIC ARRAYS (PLA):

A programmable logic device (or PLD) is a general name for a digital integrated circuit capable
of being programmed to provide a variety of different logic functions. PLDs are electronic
components, used to build reconfigurable digital circuits. Programmable Read Only Memory
(PROM), Programmable Array Logic (PAL), and Programmable Logic Array (PLA) are
included in the general classification.

! | }

PROM PAL PLA
Fixed AND, Fusible OR Fusible AND, Fixed OR Fusible AND, Fusible OR

General Classification of PLDs

Programmable Logic Arrays (PLA):

A PLA with n inputs and m outputs (see the following Figure) can realize m functions of n variables. In
PLA, the product terms of the input variables is realized by an AND array; and the OR array ORs together
the product terms needed to form the output functions. Hence, a PLA implements a sum-of-products
expression.

—]
nInput | —> AND OR
Lines | ! | Array | ¢ Array
—>
—
>
k Word
Lines y, Output Lines

FIGURE: Programmable Logic Array Structure

Example: Realize the following functions using PLA:
FO=Xm (0, 1,4,6)= AB’ + AC’

ADE (21CS33), Module 3: Combinational Circuit Design and Simulation Using Gates. Page 79

Maharaja Institute of Technology Mysore Department of Information Science & Engineering

F1=¥m(2,3.,4,6,7)=B+AC’
F2=3m (0, 1,2,6)=A’B’ + BC
F3=3¥m(2,3,5,6,7)=AC+B

Solution: The following Figure shows a PLA which realizes the said functions. Product terms
are formed in the AND array by connecting switching elements at appropriate points in the
array. For example, to form A’B’, switching elements are used to connect the first word line
with the A’ and B’ lines. Switching elements are connected in the OR array to select the product
terms needed for the output functions. For example, because FO = A’B” + AC’, switching
elements are used to connect the A’B’ and AC” lines to the FO line.

Inputs

A B c

AR

VoA
. 2 = e i

'
¥l

=g
.1|_]
$y

+V

VAN =

VAN /@/ : P \%\
&
B

Fy A F
Outputs

FIGURE: PLA with Three Inputs, Five Product Terms, and Four Outputs

5,

The connections in the AND and OR arrays of this PLA make it equivalent to the AND-OR
array shown in the following Figure.
A B G

OR Array

AND A;—ray
Fy F F, F

FIGURE : AND-OR Array Equivalent

The contents of a PLA can be specified by a PLA table. The following Table specifies
the PLA shown in the above Figure. The input side of the table specifies the product terms. The

ADE (21CS33), Module 3: Combinational Circuit Design and Simulation Using Gates. Page 80

Maharaja Institute of Technology Mysore Department of Information Science & Engineering

symbols 0, 1, and — indicate whether a variable is complemented, not complemented, or not
present in the corresponding product term. The output side of the table specifies which product
terms appear in each output function. A 1 or 0 indicates whether a given product term is present
or not present in the corresponding output function. Thus, the first row of Table indicates that
the term A’B’ is present in output functions FO and F2, and the second row indicates that AC”
is present in FO and F1.

TABLE: PLA Table
Product | Inputs Outputs

Term ABC | FRFFRF
AB 00- 1010 F=AB +AC
AC 1-0 1100 F=AC+8B
B -1- | 0101 /R=AB+BC
BC -10 | 0010 FR=B+AC
AC 1-1 0001

Example: Realize the following functions using PLA:
fi=abd+abd+ab'c' +b'c

fo=abd+c

f; = abd +ab'c' + bc

Solution:

Based on the given expressions, we can construct a PLA table (see Figure (a)), with one row for
each distinct product term. Figure (b) shows the corresponding PLA structure, which has four
inputs, six product terms, and three outputs. A dot at the intersection of a word line and an input

or output line indicates the presence of a switching element in the array.
Inputs

abd
abd
e Word
i Lines
c
be
5 B
a2
(a) PLA table (b) PLA structure Outputs

NOTE:

Mask-programmable and field-programmable PLAs are available. The mask-programmable
type is programmed at the time of manufacture. The field-programmable logic array (FPLA)
has programmable interconnection points that use electronic charges to store a pattem in the
AND and OR arrays.

Problem:
Design a PLA to recognize each of the 10 decimal digits represented in binary form and to
correctly drive a 7-segment display.

Solution:

The PLA must have 4 inputs, as shown in the following Fig. Four bits are required to represent
the 10 decimal numbers. There must be 7 outputs (abcdefg).

ADE (21CS33), Module 3: Combinational Circuit Design and Simulation Using Gates. Page 81

ja Institute of T Mysore Department of Information Science & Engineeri

<
>l
<t
<t

=)

"~

e | |9 | |vw & |w

UUUUUUU0U0U

t »ic g 2 7§
Programmable Array Logic (PAL):
A PAL is a special case of the programmable logic array (PLA) in which the AND array is

programmable and the OR array is fixed. The following Figure represents a segment of an un-
programmed PAL.

— ZNoninvcrtcd Output Logiicaly
Inverted Output f;l““’ﬁlem

ABC

A—
?"-‘}A B = 3 ABC

ADE (21CS33), Module 3: Combinational Circuit Design and Simulation Using Gates. Page 82

Maharaja Institute of Technology Mysore Department of Information Science & Engineering

Consider the PAL segment of the following
Figure (a), used to realize the function 1112+ I'l I12. The X’s in the following
Figure (b) indicate that I1 and I'2 lines are connected to the first AND gate, and the I'l and 12

lines are connected to the other gate.
:
— Output

W P>TH | - "‘%; 2

(a) Unprogrammed (b) Programmed

LB+ G

Example:
Implement Full Adder using PAL.

Solution:

The logic equations for the full adder are:

sum = xy ¢y + Xyc i + Xy + xycp,

Cout = Xy + YCin + XCi,

The following Figure shows PAL where each OR gate is driven by four AND gates. The X’s on

the diagram show the connections that are programmed into the PAL to implement the full adder
equations.

I

Sum

("Olll

X
FIGURE: Implementation of a Full Adder Using a PAL

ADE (21CS33), Module 3: Combinational Circuit Design and Simulation Using Gates. Page 83

