
DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 71

 module

MODULE-4

NORMALIZATION DATABASE DESGIN THEORY

4.1 Informal design guidelines for relation schemas

The four informal measures of quality for relation schema

 Semantics of the attributes
 Reducing the redundant values in tuples
 Reducing the null values in tuples
 Disallowing the possibility of generating spurious tuples

4.1.1 Semantics of relations attributes

Specifies how to interpret the attributes values stored in a tuple of the relation. In other words,
how the attribute value in a tuple relate to one another.

Guideline 1: Design a relation schema so that it is easy to explain its meaning. Do not combine

attributes from multiple entity types and relationship types into a single relation.
Save storage space and avoid update anomalies.
Insertion anomalies.

Deletion anomalies.
Modification anomalies

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 72

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 73

Insertion Anomalies
To insert a new employee tuple into EMP_DEPT, we must include either the attribute values for that

department that the employee works for, or nulls.

It's difficult to insert a new department that has no employee as yet in the EMP_DEPT relation.
The only way to do this is to place null values in the attributes for employee. This causes a problem
because SSN is the primary key of EMP_DEPT, and each tuple is supposed to represent an
employee entity - not a department entity.

Deletion Anomalies
If we delete from EMP_DEPT an employee tuple that happens to represent the last employee working for

a particular department, the information concerning that department is lost from the database.

Modification Anomalies
In EMP_DEPT, if we change the value of one of the attributes of a particular department- say the manager

of department 5- we must update the tuples of all employees who work in that department.

Guideline 2: Design the base relation schemas so that no insertion, deletion, or modification

anomalies occur. Reducing the null values in tuples. e.g., if 10% of employees have offices, it Is
better to have a separate relation, EMP_OFFICE, rather than an attribute OFFICE_NUMBER in
EMPLOYEE.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 74

Guideline 3: Avoid placing attributes in a base relation whose values are mostly null.

Disallowing spurious tuples.

Spurious tuples - tuples that are not in the original relation but generated by natural join of
decomposed subrelations.

Example: decompose EMP_PROJ into EMP_LOCS and EMP_PROJ1.

Fig. 14.5a

Guideline 4: Design relation schemas so that they can be naturally JOINed on primary keys or
foreign keys in a way that guarantees no spurious tuples are generated.

6.2 A functional dependency (FD) is a constraint between two sets of attributes from the

database. It is denoted by

X Y

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 75

We say that "Y is functionally dependent on X". Also, X is called the left-hand side of the FD.

Y is called the right-hand side of the FD.

A functional dependency is a property of the semantics or meaning of the attributes, i.e., a property
of the relation schema. They must hold on all relation states (extensions) of R. Relation extensions

r(R). A FD X Y is a full functional dependency if removal of any attribute from X means that

the dependency does not hold any more; otherwise, it is a partial functional dependency.

Examples:

1. SSN ENAME
2. PNUMBER {PNAME, PLOCATION}

3. {SSN, PNUMBER} HOURS

FD is property of the relation schema R, not of a particular relation state/instance

Let R be a relation schema, where X R and Y R

t1, t2 r, t1[X] = t2[X] t1[Y] = t2[Y]

The FD X Y holds on R if and only if for all possible relations r(R), whenever two tuples of r
agree on the attributes of X, they also agree on the attributes of Y.

 the single arrow denotes "functional dependency"

 X Y can also be read as "X determines Y"
 the double arrow denotes "logical implication"

4.2.1 Inference Rules

IR1. Reflexivity e.g. X X

 a formal statement of trivial dependencies; useful for derivations

 if a dependency holds, then we can freely expand its left hand side

 the "most powerful" inference rule; useful in multi-step derivations
Armstrong inference rules

are sound

meaning that given a set of functional dependencies F specified on a relation schema R,

any dependency that we can infer from F by using IR1 through IR3 holds every relation
state r of R that specifies the dependencies in F. In other words, rules can be used to derive

precisely the closure or no additional FD can be derived.
complete

Dept of CSE,GCEM Page 86

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 76

Data Base Management System(10CS54)

meaning that using IR1 through IR3 repeatedly to infer dependencies until no more

dependencies can be inferred results in the complete set of all possible dependencies that
can be inferred from F. In other words, given a set of FDs, all implied FDs can be derived

using these 3 rules.
Closure of a Set of Functional Dependencies
Given a set X of FDs in relation R, the set of all FDs that are implied by X is called the

closure of X, and is denoted X
+
.

Algorithms for determining X+

X+ := X;

repeat

oldX+ := X+

for each FD Y Z in F do

if Y X+ then X+ := X+ Z;

until oldX+ = X+;

Example:

A BC

E CF

B E
CD EF

Compute {A, B}+ of the set of attributes under this set of FDs.

Solution:

Step1: {A, B}+ := {A, B}.

Go round the inner loop 4 time, once for each of the given FDs.
On the first iteration, for A BC

 A {A, B}
+

 {A, B}
+
 := {A, B, C}.

Step2: On the second iteration, for E

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 77

CF, {A, B, C}

Step3

:On

the

third iteration,

for

B

E

B

{A, B,C}+

{A, B}+ := {A, B, C, E}.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 78

Step4: On the fourth iteration, for CD EF remains unchanged.

Go round the inner loop 4 times again. On the first iteration result does not change; on the
second it expands to {A,B,C,E,F}; On the third and forth it does not change.

Now go round the inner loop 4 times. Closure does not change and so the whole process
terminates, with
{A,B}+ = {A,B,C,E,F}

Example.

F = { SSN ENAME, PNUMBER {PNAME, PLOCATION}, {SSN,PNUMBER}

HOURS }

{SSN}+ = {SSN, ENAME}

{PNUMBER}+ = ?

{SSN,PNUMBER}+ = ?

4.3 Normalization

The purpose of normalization.

 The problems associated with redundant data.
 The identification of various types of update anomalies such as insertion, deletion, and

modification anomalies.
 How to recognize the appropriateness or quality of the design of relations.
 The concept of functional dependency, the main tool for measuring the appropriateness of

attribute groupings in relations.
 How functional dependencies can be used to group attributes into relations that are in a known

normal form.
 How to define normal forms for relations.

 How to undertake the process of normalization.
 How to identify the most commonly used normal forms, namely first (1NF), second (2NF), and

third (3NF) normal forms, and Boyce-Codd normal form (BCNF).
 How to identify fourth (4NF), and fifth (5NF) normal forms

Main objective in developing a logical data model for relational database systems is to create an

accurate representation of the data, its relationships, and constraints. To achieve this objective, we
must identify a suitable set of relations. A technique for producing a set of relations with desirable

properties, given the data requirements of an enterprise

NORMAL FORMS

A relation is defined as a set of tuples. By definition, all elements of a set are distinct; hence, all
tuples in a relation must also be distinct. This means that no two tuples can have the same
combination of values for all their attributes.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 79

Any set of attributes of a relation schema is called a superkey. Every relation has at least one
superkey—the set of all its attributes. A key is a minimal superkey, i.e., a superkey from which we
cannot remove any attribute and still have the uniqueness constraint hold.

In general, a relation schema may have more than one key. In this case, each of the keys is called
a candidate key. It is common to designate one of the candidate keys as the primary key of the

relation. A foreign key is a key in a relation R but it's not a key (just an attribute) in other relation
R' of the same schema.

Integrity Constraints

The entity integrity constraint states that no primary key value can be null. This is because the primary

key value is used to identify individual tuples in a relation; having null values for the primary key implies

that we cannot identify some tuples.

The referential integrity constraint is specified between two relations and is used to maintain the
consistency among tuples of the two relations. Informally, the referential integrity constraint states
that a tuple in one relation that refers to another relation must refer to an existing tuple in that
relation.

An attribute of a relation schema R is called a prime attribute of the relation R if it is a member
of any key of the relation R. An attribute is called nonprime if it is not a prime attribute—that is,
if it is not a member of any candidate key.

The goal of normalization is to create a set of relational tables that are free of redundant data and
that can be consistently and correctly modified. This means that all tables in a relational database
should be in the in the third normal form (3 NF).

Normalization of data can be looked on as a process during which unsatisfactory relation schemas

are decomposed by breaking up their attributes into smaller relation schemas that possess desirable
properties. One objective of the original normalization process is to ensure that the update

anomalies such as insertion, deletion, and modification anomalies do not occur

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 80

The most commonly used normal forms

 First Normal Form (1NF)

 Second Normal Form (2NF)

 Third Normal Form (3NF)
 Boyce-Codd Normal

Form Other Normal Forms
 Fourth Normal Form

 Fifth Normal Form

 Domain Key Normal Form

4.3.1 First Normal Form (1NF)

First normal form is now considered to be part of the formal definition of a relation; historically,
it was defined to disallow multivalued attributes, composite attributes, and their combinations. It

states that the domains of attributes must include only atomic (simple, indivisible) values and that

the value of any attribute in a tuple must be a single value from the domain of that attribute.

Practical Rule: "Eliminate Repeating Groups," i.e., make a separate table for each set of related
attributes, and give each table a primary key.

Formal Definition: A relation is in first normal form (1NF) if and only if all underlying simple
domains contain atomic values only.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 81

4.3.2 Second Normal Form (2NF)

Second normal form is based on the concept of fully functional dependency. A functional X Y

is a fully functional dependency is removal of any attribute A from X means that the dependency

does not hold any more. A relation schema is in 2NF if every nonprime attribute in relation is fully

functionally dependent on the primary key of the relation. It also can be restated as: a relation

schema is in 2NF if every nonprime attribute in relation is not partially dependent on any key of

the relation.

Practical Rule: "Eliminate Redundant Data," i.e., if an attribute depends on only part of a
multivalued key, remove it to a separate table.

Formal Definition: A relation is in second normal form (2NF) if and only if it is in 1NF and every
nonkey attribute is fully dependent on the primary key.

4.3.3 Third Normal Form (3NF)

Third normal form is based on the concept of transitive dependency. A functional dependency X
 Y in a relation is a transitive dependency if there is a set of attributes Z that is not a subset of

any key of the relation, and both X Z and Z Y hold. In other words, a relation is in 3NF if,
whenever a functional dependency

X A holds in the relation, either (a) X is a superkey of the relation, or (b) A is a prime attribute
of the relation.

Practical Rule: "Eliminate Columns not Dependent on Key," i.e., if attributes do not contribute to
a description of a key, remove them to a separate table

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 82

Formal Definition: A relation is in third normal form (3NF) if and only if it is in 2NF and every
nonkey attribute is nontransitively dependent on the primary key.

1NF: R is in 1NF iff all domain values are atomic.

2NF: R is in 2 NF iff R is in 1NF and every nonkey attribute is fully dependent on the key.

3NF: R is in 3NF iff R is 2NF and every nonkey attribute is non-transitively dependent on the
key.

4.4 Boyce-Codd Normal Form (BCNF)

A relation schema R is in Boyce-Codd Normal Form (BCNF) if whenever a FD X -> A holds in
R, then X is a superkey of R

 Each normal form is strictly stronger than the previous one:

 Every 2NF relation is in 1NF Every 3NF relation is in 2NF

 Every BCNF relation is in 3NF

 There exist relations that are in 3NF but not in BCNF

A relation is in BCNF, if and only if every determinant is a candidate key.

Additional criteria may be needed to ensure the the set of relations in a relational database are
satisfactory.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 83

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 84

If X Y is non-trivial then X is a super key

STREET CITY ZIP

{CITY,STREET } ZIP

ZIP CITY

 Insertion anomaly: the city of a zip code can‘t be stored, if the street is not given

Normalization

STREET ZIP ZIP CITY

Relationship Between Normal Forms

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 85

Questions

1. What is the need for normalization? Explain the first,second and third normal forms with
examples.

2. Explain informal design guidelines for relation schemas.
3. A What is functional dependency?write an algorithm to find a minimal cover for a set of

functional dependencies.
4. What is the need for normalization ?explain second normal form
5. Which normal form is based on the concept of transitive dependency? Explain with an

example the decomposition into 3NF
6. Explain multivalued dependency. Explain 4NF with an example.

7. Explain any Two informal quality measures employed for a relation schema Design?
8. Consider the following relations: Car_sale(car_no,date-

sold,salemanno,commission%,discount).assume a car can be sold by multiple salesman and

hence primary key is {car-no,salesman} additional dependencies are: Date-sold

discount

and salesmanno

commision Yes this relation is in 1NF
9. Discuss the minimal sets of FD‘S?

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 86

 4.1 Properties of relational decomposition

Normalization Algorithms based on FDs to synthesize 3NF and BCNF describe two desirable
properties (known as properties of decomposition).

 Dependency Preservation Property

 Lossless join property

Dependency Preservation Property enables us to enforce a constraint on the original relation

from corresponding instances in the smaller relations.

Lossless join property enables us to find any instance of the original relation from corresponding
instances in the smaller relations (Both used by the design algorithms to achieve desirable
decompositions).
A property of decomposition, which ensures that no spurious rows are generated when relations
are reunited through a natural join operation.

4.2 Algorithms for Relational Database Schema Design

Individual relations being in higher normal do not guarantee a good deign Database schema must
posses additional properties to guarantee a good design.

Relation Decomposition and Insufficiency of Normal Forms

Suppose R = { A1, A2, …, An} that includes all the attributes of the database. R is a universal

relation schema, which states that every attribute name is unique. Using FDs, the algorithms

decomposes the universal relation schema R into a set of relation schemas

D = {R1, R2, …, Rn} that will become the relational database schema; D is called a decomposition

of R. Each attribute in R will appear in at least one relation schema Ri in the decomposition so that

no attributes are lost; we have

This is called attribute preservation condition of a decomposition.

 4.2.1 Decomposition and Dependency Preservation

We want to preserve dependencies because each dependencies in F represents a constraint on the

Database.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 87

We would like to check easily that updates to the database do not result in illegal relations being created.

It would be nice if our design allowed us to check updates without having to compute natural joins. To know

whether joins must be computed, we need to determine what functional dependencies may be tested by checking

each relation individually.

Let F be a set of functional dependencies on schema R. Let D = {R1, R2, …, Rn} be a decomposition of R.

Given a set of dependencies F on R, the projection of F on Ri, Ri(F), where Ri is a subset of R, is the set of all

functional dependencies XY such that attributes in XY are all contained in Ri. Hence the projection of F

on each relation schema Ri in the decomposition D is the set of FDs in F+, such that all their LHS and RHS

attributes are in Ri. Hence, the projection of F on each relation schema Ri in the decomposition D is the set of

functional dependencies in F+.

((R1(F))(R2(F))… (Rm(F)))+ = F+

i.e., the union of the dependencies that hold on each Ri belongs to D be equivalent to closure of F (all possible FDs)

/*Decompose relation, R, with functional dependencies, into relations, R1,..., Rn, with associated
functional dependencies,

F1,..., Fk.

The decomposition is dependency preserving iff:

F+=(F1 ... Fk)+ */

If each functional dependency specified in F either appeared directly in one of the relation schema R
in the decomposition D or could be inferred from the dependencies that appear in some R.

7.2.2 Lossless-join Dependency

A property of decomposition, which ensures that no spurious rows are generated when relations are reunited

through a natural join operation.

Lossless-join property refers to when we decompose a relation into two relations - we can rejoin the
resulting relations to produce the original relation.

Decompose relation, R, with functional dependencies, F, into relations, R1 and R2, with attributes, A1 and A2,

and associated functional dependencies, F1 and F

 Decompositions are projections of relational schemas

 R A B C A,B A B B,C B C

 a1 b1 c1 a1 b1 b1 c1

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 88

 a2 b2 c2 a2 b2 b2 c2

 a3 b1 c3 a3 b1 b1 c3

 Old tables should be derivable from the newer ones through the natural join operation

A,B(R) B,C(R) A B C

a1 b1 c1

a2 b2 c2

a3 b1 c3

a1 b1 c3

a3 b1 c1

 Wrong!
 R1, R2 is a lossless join decomposition of R iff the attributes common to R1 and R2 contain a key for

at least one of the involved relations

R A B C A,B A B B,C B C

 a1 b1 c1 a1 b1 b1 c1

 a2 b2 c2 a2 b2 b2 c2

 a3 b1 c1 a3 b1

 A,B(R) B,C(R) = B

The decomposition is lossless iff:

A1 A2 A1\A2 is in F+, or
A1 A2 A2 \A1 is in F+

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 89

However, sometimes there is the requirement to decompose a relation into more than two relations.
Although rare, these cases are managed by join dependency and 5NF.

4.3 Multivalued Dependencies and Fourth Normal Form (4NF)

4NF associated with a dependency called multi-valued dependency (MVD). MVDs in a relation are

due to first normal form (1NF), which disallows an attribute in a row from having a set of values.

MVD represents a dependency between attributes (for example, A, B, and C) in a relation, such
that for each value of A there is a set of values for B, and a set of values for C. However, the
set of values for B and C are independent of each other.
MVD between attributes A, B, and C in a relation using the following notation

A B (A multidetermines B)

A C

Formal Definition of Multivalued Dependency

A multivalued dependency (MVD) X Y specified on R, where X, and Y are both
subsets of R and Z = (R – (X Y)) specifies the following restrictions on r(R)

t3[X]=t4[X]=t1[X]=t2[X]

t3[Y] = t1[Y] and t4[Y] = t2[Y]

t3[Z] = t2[Z] and t4[Z] = t1 [Z]

4.3.1 Fourth Normal Form (4NF)

A relation that is in Boyce-Codd Normal Form and contains no MVDs. BCNF to 4NF involves
the removal of the MVD from the relation by placing the attribute(s) in a new relation along with
a copy of the determinant(s).

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 90

A Relation is in 4NF if it is in 3NF and there is no multivalued dependencies.

4.4 Join Dependencies and 5 NF

A join dependency (JD), denoted by JD{R1, R2, …, Rn}, specified on relation schema R, specifies

a constraint on the states r of R. The constraint states that every legal state r of R should have a
lossless join decomposition into R1, R2, …, Rn; that is, for every such r we have
* (R1(r), (R2(r) … (Rn(r)) = r

Lossless-join property refers to when we decompose a relation into two relations - we can rejoin
the resulting relations to produce the original relation. However, sometimes there is the

requirement to decompose a relation into more than two relations. Although rare, these cases are

managed by join dependency and 5NF.

5NF (or project-join normal form (PJNF))
A relation that has no join dependency.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 91

4.5 Other dependencies:

4.5.1 Template Dependencies

The idea behind template dependencies is to specify a template—or example—that defines each

constraint or dependency. There are two types of templates: tuple-generating templates and

constraint-generating templates. A template consists of a number of hypothesis tuples that are

meant to show an example of the tuples that may appear in one or more relations. The other part

of the template is the template conclusion. For tuple-generating templates, the conclusion is a set

of tuples that must also exist in the relations if the hypothesis tuples are there. For constraint-

generating templates, the template conclusion is a condition that must hold on the hypothesis

tuples.

4.5.2 Domain Key Normal Form

The idea behind domain-key normal form (DKNF) is to specify (theoretically, at least) the
"ultimate normal form" that takes into account all possible types of dependencies and constraints.

A relation is said to be in DKNF if all constraints and dependencies that should hold on the relation
can be enforced simply by enforcing the domain constraints and key constraints on the relation.

However, because of the difficulty of including complex constraints in a DKNF relation, its practical
utility is limited, since it may be quite difficult to specify general integrity constraints.
For example, consider a relation (where VIN# is the vehicle identification

number) and another relation MANUFACTURE(VIN#, COUNTRY) (where COUNTRY is the country of
manufacture). A general constraint may be of the following form: "If the MAKE is either Toyota or
Lexus, then the first character of the VIN# is a "J" if the country of manufacture is Japan; if the
MAKE is Honda or Acura, the second character of the VIN# is a "J" if the country of manufacture is
Japan." There is no simplified way to represent such constraints short of writing a procedure (or
general assertions) to test them.

Questions

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 92

1. Explain

i. Inclusion dependency

ii. ii) Domain Key Normal Form

2. Explain multivolume dependency and fourth normal form, with an example

3. Explain lossless join property

4. what are the ACID Properties? Explain any One?

5. What is Serializibility?How can seriaizability?Justify your answer?

